Constraints on southern hemisphere tropical climate change during the Little Ice Age and Younger Dryas based on glacier modeling of the Quelccaya Ice Cap, Peru
Quaternary Science Reviews Elsevier 125 (2015) 106-116
Abstract:
© 2015 The Authors. Improving the late Quaternary paleoclimate record through climate interpretations of low-latitude glacier length changes advances our understanding of past climate change events and the mechanisms for past, present, and future climate change. Paleotemperature reconstructions at low-latitude glaciers are uniquely fruitful because they can provide both site-specific information and enhanced understanding of regional-scale variations due to the structure of the tropical atmosphere. We produce Little Ice Age (LIA) and Younger Dryas (YD) paleoclimate reconstructions for the Huancané outlet glacier of the Quelccaya Ice Cap (QIC) and low-latitude southern hemisphere regional sea surface temperatures (SSTs) using a coupled ice-flow and energy balance model. We also model the effects of long-term changes in the summit temperature and precipitiation rate and the effects of interannual climate variability on the Huancané glacier length. We find temperature to be the dominant climate driver of glacier length change. Also, we find that interannual climate variability cannot adequately explain glacier advances inferred from the geomorphic record, necessitating that these features were formed during past colder climates. To constrain our LIA reconstruction, we incorporate the QIC ice core record, finding a LIA air temperature cooling at the ice cap of between ~0.7 °C and ~1.1 °C and ~0.4 °C and regional SSTs cooling of ~0.6 °C. For the YD paleoclimate reconstructions, we propose two limits on the precipitation rate, since the ice core record does not extend into the Pleistocene: 1) the precipitation rate scales with the Clausius-Clapeyron relationship (upper limit on cooling) and 2) the precipitation rate increases by 40% (lower limit on cooling), which is an increase about twice as great as the regional increases realized in GCM simulations for the period. The first limit requires ~1.6 °C cooling in ice cap air temperatures and ~0.9 °C cooling in SSTs, and the second limit requires ~1.0 °C cooling in ice cap air temperatures and ~0.5 °C cooling in SSTs. Our temperature reconstructions are in good agreement with the magnitude and trend of GCM simulations that incorporate the forcing mechanisms hypothesized to have caused these climate change events.Climate impact of beef: an analysis considering multiple time scales and production methods without use of global warming potentials
Environmental Research Letters Institute of Physics Publishing 10:8 (2015) 085002-085002
Abstract:
An analysis of the climate impact of various forms of beef production is carried out, with a particular eye to the comparison between systems relying primarily on grasses grown in pasture (‘grass-fed’ or ‘pastured’beef) and systems involving substantial use of manufactured feed requiring significant external inputs in the form of synthetic fertilizer and mechanized agriculture (‘feedlot’beef). The climate impact is evaluated without employing metrics such asCO e 2 or global warming potentials. The analysis evaluates the impact at all time scales out to 1000 years. It is concluded that certain forms of pastured beef production have substantially lower climate impact than feedlot systems. However, pastured systems that require significant synthetic fertilization, inputs from supplemental feed, or deforestation to create pasture, have substantially greater climate impact at all time scales than the feedlot and dairy-associated systems analyzed. Even the best pastured system analyzed has enough climate impact to justify efforts to limit future growth of beef production, which in any event would be necessary if climate and other ecological concerns were met by a transition to primarily pasture-based systems. Alternate mitigation options are discussed, but barring unforseen technological breakthroughs worldwide consumption at current North American per capita rates appears incompatible with a 2 °C warming target.Erratum: Transit spectroscopy with JWST: systematics, star-spots and stitching
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 451:2 (2015) 1306-1306
Explosive volcanic activity on Venus: The roles of volatile contribution, degassing, and external environment
Planetary and Space Science 113-114 (2015) 33-48
Abstract:
Abstract We investigate the conditions that will promote explosive volcanic activity on Venus. Conduit processes were simulated using a steady-state, isothermal, homogeneous flow model in tandem with a degassing model. The response of exit pressure, exit velocity, and degree of volatile exsolution was explored over a range of volatile concentrations (H2O and CO2), magma temperatures, vent altitudes, and conduit geometries relevant to the Venusian environment. We find that the addition of CO2 to an H2O-driven eruption increases the final pressure, velocity, and volume fraction gas. Increasing vent elevation leads to a greater degree of magma fragmentation, due to the decrease in the final pressure at the vent, resulting in a greater likelihood of explosive activity. Increasing the magmatic temperature generates higher final pressures, greater velocities, and lower final volume fraction gas values with a correspondingly lower chance of explosive volcanism. Cross-sectionally smaller, and/or deeper, conduits were more conducive to explosive activity. Model runs show that for an explosive eruption to occur at Scathach Fluctus, at Venus' mean planetary radius (MPR), 4.5% H2O or 3% H2O with 3% CO2 (from a 25 m radius conduit) would be required to initiate fragmentation; at Ma'at Mons (~9 km above MPR) only ~2% H2O is required. A buoyant plume model was used to investigate plume behaviour. It was found that it was not possible to achieve a buoyant column from a 25 m radius conduit at Scathach Fluctus, but a buoyant column reaching up to ~20 km above the vent could be generated at Ma'at Mons with an H2O concentration of 4.7% (at 1300 K) or a mixed volatile concentration of 3% H2O with 3% CO2 (at 1200 K). We also estimate the flux of volcanic gases to the lower atmosphere of Venus, should explosive volcanism occur. Model results suggest explosive activity at Scathach Fluctus would result in an H2O flux of ~107 kg s-1. Were Scathach Fluctus emplaced in a single event, our model suggests that it may have been emplaced in a period of ~15 days, supplying 1-2×104 Mt H2O to the atmosphere locally. An eruption of this scale might increase local atmospheric H2O abundance by several ppm over an area large enough to be detectable by near-infrared nightside sounding using the 1.18 μm spectral window such as that carried out by the Venus Express/VIRTIS spectrometer. Further interrogation of the VIRTIS dataset is recommended to search for ongoing volcanism on Venus.The CO2 continuum absorption in the 1.10- and 1.18-μm windows on Venus from Maxwell Montes transits by SPICAV IR onboard Venus express
Planetary and Space Science 113-114 (2015) 66-77