Saturn's tropospheric composition and clouds from Cassini/VIMS 4.6-5.1μm nightside spectroscopy

Icarus 214:2 (2011) 510-533

Authors:

LN Fletcher, KH Baines, TW Momary, AP Showman, PGJ Irwin, GS Orton, M Roos-Serote, C Merlet

Abstract:

The latitudinal variation of Saturn's tropospheric composition (NH3, PH3 and AsH3) and aerosol properties (cloud altitudes and opacities) are derived from Cassini/VIMS 4.6-5.1μm thermal emission spectroscopy on the planet's nightside (April 22, 2006). The gaseous and aerosol distributions are used to trace atmospheric circulation and chemistry within and below Saturn's cloud decks (in the 1- to 4-bar region). Extensive testing of VIMS spectral models is used to assess and minimise the effects of degeneracies between retrieved variables and sensitivity to the choice of aerosol properties. Best fits indicate cloud opacity in two regimes: (a) a compact cloud deck centred in the 2.5-2.8bar region, symmetric between the northern and southern hemispheres, with small-scale opacity variations responsible for numerous narrow light/dark axisymmetric lanes; and (b) a hemispherically asymmetric population of aerosols at pressures less than 1.4bar (whose exact altitude and vertical structure is not constrained by nightside spectra) which is 1.5-2.0× more opaque in the summer hemisphere than in the north and shows an equatorial maximum between ±10° (planetocentric).Saturn's NH3 spatial variability shows significant enhancement by vertical advection within ±5° of the equator and in axisymmetric bands at 23-25°S and 42-47°N. The latter is consistent with extratropical upwelling in a dark band on the poleward side of the prograde jet at 41°N (planetocentric). PH3 dominates the morphology of the VIMS spectrum, and high-altitude PH3 at p<1.3bar has an equatorial maximum and a mid-latitude asymmetry (elevated in the summer hemisphere), whereas deep PH3 is latitudinally-uniform with off-equatorial maxima near ±10°. The spatial distribution of AsH3 shows similar off-equatorial maxima at ±7° with a global abundance of 2-3ppb. VIMS appears to be sensitive to both (i) an upper tropospheric circulation (sensed by NH3 and upper-tropospheric PH3 and hazes) and (ii) a lower tropospheric circulation (sensed by deep PH3, AsH3 and the lower cloud deck). © 2011 Elsevier Inc.

A single-scattering approximation for infrared radiative transfer in limb geometry in the Martian atmosphere

Journal of Quantitative Spectroscopy and Radiative Transfer 112:10 (2011) 1568-1580

Authors:

A Kleinböhl, JT Schofield, WA Abdou, PGJ Irwin, RJ de Kok

Abstract:

We present a single-scattering approximation for infrared radiative transfer in limb geometry in the Martian atmosphere. It is based on the assumption that the upwelling internal radiation field is dominated by a surface with a uniform brightness temperature. It allows the calculation of the scattering source function for individual aerosol types, mixtures of aerosol types, and mixtures of gas and aerosol. The approximation can be applied in a Curtis-Godson radiative transfer code and is used for operational retrievals from Mars Climate Sounder measurements. Radiance comparisons with a multiple scattering model show good agreement in the mid- and far-infrared although the approximate model tends to underestimate the radiances in realistic conditions of the Martian atmosphere. Relative radiance differences are found to be about 2% in the lowermost atmosphere, increasing to ~10% in the middle atmosphere of Mars. The increasing differences with altitude are mostly due to the increasing contribution to limb radiance of scattering relative to emission at the colder, higher atmospheric levels. This effect becomes smaller toward longer wavelengths at typical Martian temperatures. The relative radiance differences are expected to produce systematic errors of similar magnitude in retrieved opacity profiles. © 2011 Elsevier Ltd.

Some fine points on radiative forcing

Physics Today AIP Publishing 64:7 (2011) 12-12

Thermal structure and dynamics of Saturn's northern springtime disturbance.

Science 332:6036 (2011) 1413-1417

Authors:

Leigh N Fletcher, Brigette E Hesman, Patrick GJ Irwin, Kevin H Baines, Thomas W Momary, Agustin Sanchez-Lavega, F Michael Flasar, Peter L Read, Glenn S Orton, Amy Simon-Miller, Ricardo Hueso, Gordon L Bjoraker, Andrei Mamoutkine, Teresa del Rio-Gaztelurrutia, Jose M Gomez, Bonnie Buratti, Roger N Clark, Philip D Nicholson, Christophe Sotin

Abstract:

Saturn's slow seasonal evolution was disrupted in 2010-2011 by the eruption of a bright storm in its northern spring hemisphere. Thermal infrared spectroscopy showed that within a month, the resulting planetary-scale disturbance had generated intense perturbations of atmospheric temperatures, winds, and composition between 20° and 50°N over an entire hemisphere (140,000 kilometers). The tropospheric storm cell produced effects that penetrated hundreds of kilometers into Saturn's stratosphere (to the 1-millibar region). Stratospheric subsidence at the edges of the disturbance produced "beacons" of infrared emission and longitudinal temperature contrasts of 16 kelvin. The disturbance substantially altered atmospheric circulation, transporting material vertically over great distances, modifying stratospheric zonal jets, exciting wave activity and turbulence, and generating a new cold anticyclonic oval in the center of the disturbance at 41°N.

HYDROGEN GREENHOUSE PLANETS BEYOND THE HABITABLE ZONE

The Astrophysical Journal Letters American Astronomical Society 734:1 (2011) l13

Authors:

Raymond Pierrehumbert, Eric Gaidos