Multiplexing 32,000 spectra onto 8 detectors: The HARMONI field splitting, image slicing and wavelength selecting optics
Proceedings of SPIE - The International Society for Optical Engineering 8450 (2012)
Abstract:
HARMONI, the High Angular Resolution Monolithic Optical & Near-infrared Integral field spectrograph is one of two first-light instruments for the European Extremely Large Telescope. Over a 256x128 pixel field-of-view HARMONI will simultaneously measure approximately 32,000 spectra. Each spectrum is about 4000 spectral pixels long, and covers a selectable part of the 0.47-2.45 μm wavelength range at resolving powers of either R=4000, 10000, or 20000. All 32,000 spectra are imaged onto eight HAWAII4RG detectors using a multiplexing scheme that divides the input field into four sub-fields, each imaged onto one image slicer that in turn re-arranges a single sub-field into two long exit slits feeding one spectrograph each. In total we require eight spectrographs, each with one HAWAII4RG detector. A system of articulated and exchangeable fold-mirrors and VPH gratings allows one to select different spectral resolving powers and wavelength ranges of interest while keeping a fixed geometry between the spectrograph collimator and camera avoiding the need for an articulated grating and camera. In this paper we describe both the field splitting and image slicing optics as well as the optics that will be used to select both spectral resolving power and wavelength range. © 2012 SPIE.The opto-mechanical design of HARMONI: A first light integral field spectrograph for the E-ELT
Proceedings of SPIE - The International Society for Optical Engineering 8446 (2012)
Abstract:
HARMONI is a visible and near-IR integral field spectrograph, providing the E-ELT's spectroscopic capability at first light. It obtains simultaneous spectra of 32000 spaxels, at a range of resolving powers from R∼4000 to R∼20000, covering the wavelength range from 0.47 to 2.45 ìm. The 256 ? 128 spaxel field of view has four different plate scales, with the coarsest scale (40 mas) providing a 5? ? 10? FoV, while the finest scale is a factor of 10 finer (4mas). We describe the opto-mechanical design of HARMONI, prior to the start of preliminary design, including the main subsystems - namely the image de-rotator, the scale-changing optics, the splitting and slicing optics, and the spectrographs. We also present the secondary guiding system, the pupil imaging optics, the field and pupil stops, the natural guide star wavefront sensor, and the calibration unit. © 2012 SPIE.A new experimental setup for making thermal emission measurements in a simulated lunar environment.
Rev Sci Instrum 83:12 (2012) 124502
Abstract:
One of the key problems in determining lunar surface composition for thermal-infrared measurements is the lack of comparable laboratory-measured spectra. As the surface is typically composed of fine-grained particulates, the lunar environment induces a thermal gradient within the near sub-surface, altering the emission spectra: this environment must therefore be simulated in the laboratory, considerably increasing the complexity of the measurement. Previous measurements have created this thermal gradient by either heating the cup in which the sample sits or by illuminating the sample using a solar-like source. This is the first setup able to measure in both configurations, allowing direct comparisons to be made between the two. Also, measurements across a wider spectral range and at a much higher spectral resolution can be acquired using this new setup. These are required to support new measurements made by the Diviner Lunar Radiometer, the first multi-spectral thermal-infrared instrument to orbit the Moon. Results from the two different heating methods are presented, with measurements of a fine-grained quartz sample compared to previous similar measurements, plus measurements of a common lunar highland material, anorthite. The results show that quartz gives the same results for both methods of heating, as predicted by previous studies, though the anorthite spectra are different. The new calibration pipeline required to convert the raw data into emissivity spectra is described also.Latitudinal variation of upper tropospheric NH3 on Saturn derived from Cassini/CIRS far-infrared measurements
Planetary and Space Science Elsevier 73:1 (2012) 347-363
Active upper-atmosphere chemistry and dynamics from polar circulation reversal on Titan.
Nature 491:7426 (2012) 732-735