Latest results from the DODO survey: Imaging planets around white dwarfs
AIP Conference Proceedings 1331 (2011) 271-277
Abstract:
The aim of the Degenerate Objects around Degenerate Objects (DODO) survey is to search for very low mass brown dwarfs and extrasolar planets in wide orbits around white dwarfs via direct imaging. The direct detection of such companions would allow the spectroscopic investigation of objects with temperatures lower (< 500 K) than the coolest brown dwarfs currently observed. The discovery of planets around white dwarfs would prove that such objects can survive the final stages of stellar evolution and place constraints on the frequency of planetary systems around their progenitors (with masses between 1.5-8 M⊙, i.e., early B to mid-F). An increasing number of planetary mass companions have been directly imaged in wide orbits around young main sequence stars. For example, the planets around HR 8799 and 1RXS J160929.1-210524 are in wide orbits of 24-68 AU and 330 AU, respectively. The DODO survey has the ability to directly image planets in post-main sequence analogues of these systems. These proceedings present the latest results of our multi-epoch J band common proper motion survey of nearby white dwarfs. © 2011 American Institute of Physics.Latest Results from the DODO Survey: Imaging Planets around White Dwarfs
AIP Conference Proceedings AIP Publishing 1331:1 (2011) 271-277
Achieving high contrasts with slicer based integral field spectrographs
AO for ELT 2011 - 2nd International Conference on Adaptive Optics for Extremely Large Telescopes (2011)
Abstract:
We demonstrate experimentally that slicer based integral field spectrographs are an attractive choice for the next generation of exoplanet direct detection instruments. By propagating a single simulated speckle though a slicer based integral field spectrograph (IFS) and performing the post processing technique of spectral deconvolution we are able to achieve a speckle rejection factor of ∼600 in broadband images (and ∼100 in individual wavelength channels) with contrasts only appearing to be limited by calibration errors in the IFS datacube. This is over an order of magnitude improvement on the current state-of-the-art and well within the requirements of EPICS (Exo Planet Imaging Camera and Spectrograph for the E-ELT) for post coronagraphic speckle rejection thus proving that slicers will not impose a limit on the achievable contrast. When using prior knowledge of the diffraction-limited size of real objects we further improve the speckle rejection factor such that it exceeds 103.Asteroid electrostatic instrumentation and modelling
Journal of Physics: Conference Series 301:1 (2011)
Abstract:
Asteroid surface material is expected to become photoelectrically charged, and is likely to be transported through electrostatic levitation. Understanding any movement of the surface material is relevant to proposed space missions to return samples to Earth for detailed isotopic analysis. Motivated by preparations for the Marco Polo sample return mission, we present electrostatic modelling for a real asteroid, Itokawa, for which detailed shape information is available, and verify that charging effects are likely to be significant at the terminator and at the edges of shadow regions for the Marco Polo baseline asteroid, 1999JU3. We also describe the Asteroid Charge Experiment electric field instrumentation intended for Marco Polo. Finally, we find that the differing asteroid and spacecraft potentials on landing could perturb sample collection for the short landing time of 20min that is currently planned.HARMONI: A first light spectrograph for the E-ELT
AO for ELT 2011 - 2nd International Conference on Adaptive Optics for Extremely Large Telescopes (2011)