Design of the HARMONI Pyramid WFS module

(2020)

Authors:

Noah Schwartz, Jean-François Sauvage, Edgard Renault, Carlos Correia, Benoit Neichel, Thierry Fusco, Kjetil Dohlen, Kacem El Hadi, Cyril Petit, Elodie Choquet, Vincent Chambouleyron, Jerome Paufique, Fraser Clarke, Niranjan Thatte, Ian Bryson

The atmosphere of Mars as observed by InSight

Nature Geoscience Springer Nature 13:3 (2020) 190-198

Authors:

Don Banfield, Aymeric Spiga, Claire Newman, François Forget, Mark Lemmon, Ralph Lorenz, Naomi Murdoch, Daniel Viudez-Moreiras, Jorge Pla-Garcia, Raphaël F Garcia, Philippe Lognonné, Özgür Karatekin, Clément Perrin, Léo Martire, Nicholas Teanby, Bart Van Hove, Justin N Maki, Balthasar Kenda, Nils T Mueller, Sébastien Rodriguez, Taichi Kawamura, John B McClean, Alexander E Stott, Constantinos Charalambous, Ehouarn Millour, Catherine L Johnson, Anna Mittelholz, Anni Määttänen, Stephen R Lewis, John Clinton, Simon C Stähler, Savas Ceylan, Domenico Giardini, Tristram Warren, William T Pike, Ingrid Daubar, Matthew Golombek, Lucie Rolland, Rudolf Widmer-Schnidrig, David Mimoun, Éric Beucler, Alice Jacob, Antoine Lucas, Mariah Baker, Véronique Ansan, Kenneth Hurst, Luis Mora-Sotomayor, Sara Navarro, Josefina Torres, Alain Lepinette, Antonio Molina, Mercedes Marin-Jimenez, Javier Gomez-Elvira, Veronica Peinado, Jose-Antonio Rodriguez-Manfredi, Brian T Carcich, Stephen Sackett, Christopher T Russell, Tilman Spohn, Suzanne E Smrekar, W Bruce Banerdt

The seismicity of Mars

Nature Geoscience Springer Nature 13:3 (2020) 205-212

Authors:

D Giardini, P Lognonné, WB Banerdt, WT Pike, U Christensen, S Ceylan, JF Clinton, M van Driel, SC Stähler, M Böse, RF Garcia, A Khan, M Panning, C Perrin, D Banfield, E Beucler, C Charalambous, F Euchner, A Horleston, A Jacob, T Kawamura, S Kedar, G Mainsant, J-R Scholz, SE Smrekar, A Spiga, C Agard, D Antonangeli, S Barkaoui, E Barrett, P Combes, V Conejero, I Daubar, M Drilleau, C Ferrier, T Gabsi, T Gudkova, K Hurst, F Karakostas, S King, M Knapmeyer, B Knapmeyer-Endrun, R Llorca-Cejudo, A Lucas, L Luno, L Margerin, JB McClean, D Mimoun, N Murdoch, F Nimmo, M Nonon, C Pardo, A Rivoldini, JA Rodriguez Manfredi, H Samuel, M Schimmel, AE Stott, E Stutzmann, N Teanby, T Warren, RC Weber, M Wieczorek, C Yana

Color, composition, and thermal environment of Kuiper Belt object (486958) Arrokoth

Science American Association for the Advancement of Science (AAAS) 367:6481 (2020)

Authors:

WM Grundy, MK Bird, DT Britt, JC Cook, DP Cruikshank, CJA Howett, S Krijt, IR Linscott, CB Olkin, AH Parker, S Protopapa, M Ruaud, OM Umurhan, LA Young, CM Dalle Ore, JJ Kavelaars, JT Keane, YJ Pendleton, SB Porter, F Scipioni, JR Spencer, SA Stern, AJ Verbiscer, HA Weaver, RP Binzel, MW Buie, BJ Buratti, A Cheng, AM Earle, HA Elliott, L Gabasova, GR Gladstone, ME Hill, M Horanyi, DE Jennings, AW Lunsford, DJ McComas, WB McKinnon, RL McNutt, JM Moore, JW Parker, E Quirico, DC Reuter, PM Schenk, B Schmitt, MR Showalter, KN Singer, GE Weigle, AM Zangari

Coordinate Rotation–Amplification in the Uncertainty and Bias in Non-orthogonal Sonic Anemometer Vertical Wind Speeds

Boundary-Layer Meteorology volume 175, pages 203–235 (2020)

Authors:

John M. Frank, William J. Massman, W. Stephen Chan, Keith Nowicki & Scot C. R. Rafkin

Abstract:

Recent research indicates that non-orthogonal sonic anemometers underestimate vertical wind velocity and consequently eddy-covariance fluxes of mass and energy. Whether this is a general problem among all non-orthogonal sonic anemometers, including those calibrated for flow-shadowing effects, is unknown. To investigate this, we test two sonic anemometer designs, orthogonal (3Vx-probe, Applied Technologies, Inc.) and non-orthogonal (R3-50, Gill Instruments, Ltd.), in a series of field manipulation experiments featuring replicate instruments mounted in various orientations, and use a Bayesian analysis to determine the most likely posterior correction to produce equivalent measurements. The 3Vx-probe experiment was conducted on a 24-m scaffold at the Glacier Lakes Ecosystem Experiments Site (GLEES), Wyoming, USA AmeriFlux site while R3-50 anemometer experiments were conducted at the GLEES field site and on a 2.9-m scaffold at the Pawnee National Grassland, Colorado, USA. Without applying a shadowing correction to the 3Vx-probe, the posterior correction significantly increases the standard deviation of the horizontal velocity component by 5–15% (95% Bayesian credible interval) but without a significant change in the horizontal temperature flux; with the shadowing correction applied neither of these have significant changes. Similarly, for the R3-50 GLEES experiment, the standard deviation of the vertical velocity and vertical temperature flux significantly increase by 13–18% and 6–10% (95% credible intervals); results from the Pawnee experiment are contradictory and inconclusive. The reason for the underestimated vertical velocity is undetermined, though a mathematical by-product of the non-orthogonal geometry is that small systematic measurement biases can become large uncertainties in the vertical velocity. This could affect all non-orthogonal designs.