Shape of (101955) Bennu indicative of a rubble pile with internal stiffness

Nature Geoscience Nature Research 12:4 (2019) 247-252

Authors:

OS Barnouin, MG Daly, EE Palmer, RW Gaskell, JR Weirich, CL Johnson, MM Al Asad, JH Roberts, ME Perry, HCM Susorney, RT Daly, EB Bierhaus, JA Seabrook, RC Espiritu, AH Nair, L Nguyen, GA Neumann, CM Ernst, WV Boynton, MC Nolan, CD Adam, MC Moreau, B Risk, C Drouet D'Aubigny, ER Jawin, KJ Walsh, P Michel, SR Schwartz, R-L Ballouz, EM Mazarico, DJ Scheeres, J McMahon, W Bottke, S Sugita, N Hirata, N Hirata, S Watanabe, KN Burke, DN DellaGuistina, CA Bennett, DS Lauretta, OSIRIS-REx Team

Abstract:

The shapes of asteroids reflect interplay between their interior properties and the processes responsible for their formation and evolution as they journey through the Solar System. Prior to the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer) mission, Earth-based radar imaging gave an overview of (101955) Bennu’s shape. Here we construct a high-resolution shape model from OSIRIS-REx images. We find that Bennu’s top-like shape, considerable macroporosity and prominent surface boulders suggest that it is a rubble pile. High-standing, north–south ridges that extend from pole to pole, many long grooves and surface mass wasting indicate some low levels of internal friction and/or cohesion. Our shape model indicates that, similar to other top-shaped asteroids, Bennu formed by reaccumulation and underwent past periods of fast spin, which led to its current shape. Today, Bennu might follow a different evolutionary pathway, with an interior stiffness that permits surface cracking and mass wasting.

The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements

Nature Astronomy Springer Nature 3:4 (2019) 352-361

Authors:

DJ Scheeres, JW McMahon, AS French, DN Brack, D Farnocchia, Y Takahashi, JM Leonard, J Geeraert, B Page, P Antreasian, K Getzandanner, D Rowlands, EM Mazarico, J Small, DE Highsmith, M Moreau, JP Emery, B Rozitis, M Hirabayashi, P Sanchez, S Van Wal, P Tricarico, R-L Ballouz, CL Johnson, Al Al Asad, HCM Susorney, OS Barnouin, JA Seabrook, RW Gaskell, EE Palmer, KJ Walsh, ER Jawin, EB Bierhaus, P Michel, WF Bottke, MC Nolan, CHC Jr, DS Lauretta, D Vokrouhlicky, Neil Bowles, E Brown, KLD Hanna, T Warren, C Brunet, RA Chicoine, S Desjardins, D Gaudreau

Abstract:

The top-shaped morphology characteristic of asteroid (101955) Bennu, often found among fast-spinning asteroids and binary asteroid primaries, may have contributed substantially to binary asteroid formation. Yet a detailed geophysical analysis of this morphology for a fast-spinning asteroid has not been possible prior to the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission. Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of the OSIRIS-REx mission, we find a notable transition in Bennu’s surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface. As the intersection of the rotational Roche lobe with Bennu’s surface has been most recently migrating towards its equator (given Bennu’s increasing spin rate), we infer that Bennu’s surface slopes have been changing across its surface within the last million years. We also find evidence for substantial density heterogeneity within this body, suggesting that its interior is a mixture of voids and boulders. The presence of such heterogeneity and Bennu’s top shape are consistent with spin-induced failure at some point in its past, although the manner of its failure cannot yet be determined. Future measurements by the OSIRIS-REx spacecraft will provide insight into and may resolve questions regarding the formation and evolution of Bennu’s top-shape morphology and its link to the formation of binary asteroids.

The operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations

Nature Communications Springer Nature 10:1 (2019) 1291

Authors:

CW Hergenrother, CK Maleszewski, MC Nolan, J-Y Li, CY Drouet D'Aubigny, FC Shelly, ES Howell, TR Kareta, MRM Izawa, MA Barucci, EB Bierhaus, H Campins, BE Clark, EJ Christensen, DN Dellagiustina, S Fornasier, CM Hartzell, B Rizk, DJ Scheeres, PH Smith, X-D Zou, DS Lauretta

Abstract:

During its approach to asteroid (101955) Bennu, NASA's Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft surveyed Bennu's immediate environment, photometric properties, and rotation state. Discovery of a dusty environment, a natural satellite, or unexpected asteroid characteristics would have had consequences for the mission's safety and observation strategy. Here we show that spacecraft observations during this period were highly sensitive to satellites (sub-meter scale) but reveal none, although later navigational images indicate that further investigation is needed. We constrain average dust production in September 2018 from Bennu's surface to an upper limit of 150 g s-1 averaged over 34 min. Bennu's disk-integrated photometric phase function validates measurements from the pre-encounter astronomical campaign. We demonstrate that Bennu's rotation rate is accelerating continuously at 3.63 ± 0.52 × 10-6 degrees day-2, likely due to the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, with evolutionary implications.

The unexpected surface of asteroid (101955) Bennu

Nature Springer Nature 568:7750 (2019) 55-60

Authors:

DS Lauretta, DN Dellagiustina, CA Bennett, KJ Becker, SS Balram-Knutson, OS Barnouin, TL Becker, WF Bottke, WV Boynton, H Campins, BE Clark, HC Connolly, CY Drouet D'Aubigny, JP Dworkin, JP Emery, HL Enos, VE Hamilton, CW Hergenrother, ES Howell, MRM Izawa, HH Kaplan, MC Nolan, B Rizk, HL Roper, DJ Scheeres, PH Smith, KJ Walsh, CWV Wolner, Neil Bowles

Abstract:

NASA'S Origins, Spectral Interpretation, Resource Identification and Security-Regolith Explorer (OSIRIS-REx) spacecraft recently arrived at the near-Earth asteroid (101955) Bennu, a primitive body that represents the objects that may have brought prebiotic molecules and volatiles such as water to Earth1. Bennu is a low-albedo B-type asteroid2 that has been linked to organic-rich hydrated carbonaceous chondrites3. Such meteorites are altered by ejection from their parent body and contaminated by atmospheric entry and terrestrial microbes. Therefore, the primary mission objective is to return a sample of Bennu to Earth that is pristine-that is, not affected by these processes4. The OSIRIS-REx spacecraft carries a sophisticated suite of instruments to characterize Bennu's global properties, support the selection of a sampling site and document that site at a sub-centimetre scale5-11. Here we consider early OSIRIS-REx observations of Bennu to understand how the asteroid's properties compare to pre-encounter expectations and to assess the prospects for sample return. The bulk composition of Bennu appears to be hydrated and volatile-rich, as expected. However, in contrast to pre-encounter modelling of Bennu's thermal inertia12 and radar polarization ratios13-which indicated a generally smooth surface covered by centimetre-scale particles-resolved imaging reveals an unexpected surficial diversity. The albedo, texture, particle size and roughness are beyond the spacecraft design specifications. On the basis of our pre-encounter knowledge, we developed a sampling strategy to target 50-metre-diameter patches of loose regolith with grain sizes smaller than two centimetres4. We observe only a small number of apparently hazard-free regions, of the order of 5 to 20 metres in extent, the sampling of which poses a substantial challenge to mission success.

Maps of Tethys’ thermophysical properties

Icarus Elsevier BV 321 (2019) 705-714

Authors:

Cja Howett, Jr Spencer, T Hurford, A Verbiscer, M Segura

Abstract:

On 11th April 2015 Cassini's Composite Infrared Spectrometer (CIRS) made a series of observations of Tethys’ daytime anti-Saturn hemisphere over a nine-hour time period. During this time the sub-spacecraft position was remarkably stable (0.3° S to 3.9° S; 153.2° W to 221.8° W), and so these observations provide unprecedented coverage of diurnal temperature variations on Tethys’ anti-Saturn hemisphere. In 2012 a thermal anomaly was discovered at low latitudes on Tethys’ leading hemisphere; it appears cooler during the day and warmer at night than its surroundings (Howett et al., 2012) and is spatially correlated with a decrease in the IR3/UV3 visible color ratio (Schenk et al., 2011). The cause of this anomaly is believed to be surface alteration by high-energy electrons, which preferentially bombard low-latitudes of Tethys’ leading hemisphere (Schenk et al., 2011; Howett et al., 2012; Paranicas et al. 2014; Schaible et al., 2017). The thermal anomaly was quickly dubbed “Pac-Man” due to its resemblance to the 1980s video game icon. We use these daytime 2015 CIRS data, along with two sets of nighttime CIRS observations of Tethys (from 27 June 2007 and 17 August 2015) to make maps of bolometric Bond albedo and thermal inertia variations across the anti-Saturn hemisphere of Tethys (including the edge of its Pac-Man region). These maps confirm the presence of the Pac-Man thermal anomaly and show that while Tethys’ bolometric Bond albedo varies negligibly outside and inside the anomaly (0.69 ± 0.02 inside, compared to 0.71 ± 0.04 outside) the thermal inertia varies dramatically (29 ± 10 J m−2 K−1 s−1/2 inside, compared to 9 ± 4 J m−2 K−1 s−1/2 outside). These thermal inertias are in keeping with previously published values: 25 ± 3 J m−2 K−1 s−1/2 inside, and 5 ± 1 J m−2 K−1 s−1/2 outside the anomaly (Howett et al., 2012). A detailed analysis shows that on smaller spatial-scales the bolometric Bond albedo does vary: increasing to a peak value at 180° W. For longitudes between ∼100° W and ∼160° W the thermal inertia increases from northern to southern latitudes, while the reverse is true for bolometric Bond albedo. The thermal inertia on Tethys generally increases towards the center of its leading hemisphere but also displays other notable small-scale variations. These thermal inertia and bolometric Bond albedo variations are perhaps due to differences in competing surface modification by E ring grains and high-energy electrons which both bombard Tethys’ leading hemisphere (but in different ways). A comparison between the observed temperatures and our best thermal model fits shows notable discrepancies in the morning warming curve, which may provide evidence of regional variations in surface roughness effects, perhaps again due to variations in surface alteration mechanisms.