Color, composition, and thermal environment of Kuiper Belt object (486958) Arrokoth

Science American Association for the Advancement of Science (AAAS) 367:6481 (2020)

Authors:

WM Grundy, MK Bird, DT Britt, JC Cook, DP Cruikshank, CJA Howett, S Krijt, IR Linscott, CB Olkin, AH Parker, S Protopapa, M Ruaud, OM Umurhan, LA Young, CM Dalle Ore, JJ Kavelaars, JT Keane, YJ Pendleton, SB Porter, F Scipioni, JR Spencer, SA Stern, AJ Verbiscer, HA Weaver, RP Binzel, MW Buie, BJ Buratti, A Cheng, AM Earle, HA Elliott, L Gabasova, GR Gladstone, ME Hill, M Horanyi, DE Jennings, AW Lunsford, DJ McComas, WB McKinnon, RL McNutt, JM Moore, JW Parker, E Quirico, DC Reuter, PM Schenk, B Schmitt, MR Showalter, KN Singer, GE Weigle, AM Zangari

Coordinate Rotation–Amplification in the Uncertainty and Bias in Non-orthogonal Sonic Anemometer Vertical Wind Speeds

Boundary-Layer Meteorology volume 175, pages 203–235 (2020)

Authors:

John M. Frank, William J. Massman, W. Stephen Chan, Keith Nowicki & Scot C. R. Rafkin

Abstract:

Recent research indicates that non-orthogonal sonic anemometers underestimate vertical wind velocity and consequently eddy-covariance fluxes of mass and energy. Whether this is a general problem among all non-orthogonal sonic anemometers, including those calibrated for flow-shadowing effects, is unknown. To investigate this, we test two sonic anemometer designs, orthogonal (3Vx-probe, Applied Technologies, Inc.) and non-orthogonal (R3-50, Gill Instruments, Ltd.), in a series of field manipulation experiments featuring replicate instruments mounted in various orientations, and use a Bayesian analysis to determine the most likely posterior correction to produce equivalent measurements. The 3Vx-probe experiment was conducted on a 24-m scaffold at the Glacier Lakes Ecosystem Experiments Site (GLEES), Wyoming, USA AmeriFlux site while R3-50 anemometer experiments were conducted at the GLEES field site and on a 2.9-m scaffold at the Pawnee National Grassland, Colorado, USA. Without applying a shadowing correction to the 3Vx-probe, the posterior correction significantly increases the standard deviation of the horizontal velocity component by 5–15% (95% Bayesian credible interval) but without a significant change in the horizontal temperature flux; with the shadowing correction applied neither of these have significant changes. Similarly, for the R3-50 GLEES experiment, the standard deviation of the vertical velocity and vertical temperature flux significantly increase by 13–18% and 6–10% (95% credible intervals); results from the Pawnee experiment are contradictory and inconclusive. The reason for the underestimated vertical velocity is undetermined, though a mathematical by-product of the non-orthogonal geometry is that small systematic measurement biases can become large uncertainties in the vertical velocity. This could affect all non-orthogonal designs.

The geology and geophysics of Kuiper Belt object (486958) Arrokoth

Science American Association for the Advancement of Science (AAAS) 367:6481 (2020)

Authors:

JR Spencer, SA Stern, JM Moore, HA Weaver, KN Singer, CB Olkin, AJ Verbiscer, WB McKinnon, J Wm Parker, RA Beyer, JT Keane, TR Lauer, SB Porter, OL White, BJ Buratti, MR El-Maarry, CM Lisse, AH Parker, HB Throop, SJ Robbins, OM Umurhan, RP Binzel, DT Britt, MW Buie, AF Cheng, DP Cruikshank, HA Elliott, GR Gladstone, WM Grundy, ME Hill, M Horanyi, DE Jennings, JJ Kavelaars, IR Linscott, DJ McComas, RL McNutt, S Protopapa, DC Reuter, PM Schenk, MR Showalter, LA Young, AM Zangari, AY Abedin, CB Beddingfield, SD Benecchi, E Bernardoni, CJ Bierson, D Borncamp, VJ Bray, AL Chaikin, RD Dhingra, C Fuentes, T Fuse, PL Gay, SDJ Gwyn, DP Hamilton, JD Hofgartner, MJ Holman, AD Howard, CJA Howett, H Karoji, DE Kaufmann, M Kinczyk, BH May, M Mountain, M Pätzold, JM Petit, MR Piquette, IN Reid, HJ Reitsema, KD Runyon, SS Sheppard, JA Stansberry, T Stryk, P Tanga, DJ Tholen, DE Trilling, LH Wasserman

Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data

Nature Geoscience Springer Nature 13:3 (2020) 213-220

Authors:

P Lognonné, WB Banerdt, WT Pike, Tarje Nissen-Meyer, Simon Calcutt, Tristram Warren

Abstract:

Mars’s seismic activity and noise have been monitored since January 2019 by the seismometer of the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) lander. At night, Mars is extremely quiet; seismic noise is about 500 times lower than Earth’s microseismic noise at periods between 4 s and 30 s. The recorded seismic noise increases during the day due to ground deformations induced by convective atmospheric vortices and ground-transferred wind-generated lander noise. Here we constrain properties of the crust beneath InSight, using signals from atmospheric vortices and from the hammering of InSight’s Heat Flow and Physical Properties (HP3) instrument, as well as the three largest Marsquakes detected as of September 2019. From receiver function analysis, we infer that the uppermost 8–11 km of the crust is highly altered and/or fractured. We measure the crustal diffusivity and intrinsic attenuation using multiscattering analysis and find that seismic attenuation is about three times larger than on the Moon, which suggests that the crust contains small amounts of volatiles.

Initial results from the InSight mission on Mars

Nature Geoscience Springer Nature 13:3 (2020) 183-189

Authors:

W Bruce Banerdt, Suzanne E Smrekar, Don Banfield, Domenico Giardini, Matthew Golombek, Catherine L Johnson, Philippe Lognonné, Aymeric Spiga, Tilman Spohn, Clément Perrin, Simon C Stähler, Daniele Antonangeli, Sami Asmar, Caroline Beghein, Neil Bowles, Ebru Bozdag, Peter Chi, Ulrich Christensen, John Clinton, Gareth S Collins, Ingrid Daubar, Véronique Dehant, Mélanie Drilleau, Matthew Fillingim, William Folkner, Raphaël F Garcia, Jim Garvin, John Grant, Matthias Grott, Jerzy Grygorczuk, Troy Hudson, Jessica CE Irving, Günter Kargl, Taichi Kawamura, Sharon Kedar, Scott King, Brigitte Knapmeyer-Endrun, Martin Knapmeyer, Mark Lemmon, Ralph Lorenz, Justin N Maki, Ludovic Margerin, Scott M McLennan, Chloe Michaut, David Mimoun, Anna Mittelholz, Antoine Mocquet, Paul Morgan, Nils T Mueller, Naomi Murdoch

Abstract:

NASA’s InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) mission landed in Elysium Planitia on Mars on 26 November 2018. It aims to determine the interior structure, composition and thermal state of Mars, as well as constrain present-day seismicity and impact cratering rates. Such information is key to understanding the differentiation and subsequent thermal evolution of Mars, and thus the forces that shape the planet’s surface geology and volatile processes. Here we report an overview of the first ten months of geophysical observations by InSight. As of 30 September 2019, 174 seismic events have been recorded by the lander’s seismometer, including over 20 events of moment magnitude Mw = 3–4. The detections thus far are consistent with tectonic origins, with no impact-induced seismicity yet observed, and indicate a seismically active planet. An assessment of these detections suggests that the frequency of global seismic events below approximately Mw = 3 is similar to that of terrestrial intraplate seismic activity, but there are fewer larger quakes; no quakes exceeding Mw = 4 have been observed. The lander’s other instruments—two cameras, atmospheric pressure, temperature and wind sensors, a magnetometer and a radiometer—have yielded much more than the intended supporting data for seismometer noise characterization: magnetic field measurements indicate a local magnetic field that is ten-times stronger than orbital estimates and meteorological measurements reveal a more dynamic atmosphere than expected, hosting baroclinic and gravity waves and convective vortices. With the mission due to last for an entire Martian year or longer, these results will be built on by further measurements by the InSight lander.