Global Distribution and Seasonality of Martian Atmospheric HCl Explained Through Heterogeneous Chemistry
Geophysical Research Letters Wiley 52:6 (2025) e2024GL111059
Abstract:
Recent observations from the ExoMars Trace Gas Orbiter (TGO) have revealed the presence of hydrogen chloride (HCl) in the martian atmosphere. HCl shows strong seasonality, primarily appearing during Mars' perihelion period before decreasing faster than projected from photolysis and gas‐phase chemistry. HCl profiles also display local anti‐correlation with water ice aerosol. One candidate explanation is heterogeneous chemistry. We present the first results from a heterogeneous chlorine chemistry scheme incorporated into a Mars global climate model (GCM), with atmospheric dust/water ice parameterized as an HCl source/sink respectively. Results were compared against a Mars GCM with gas‐phase only chlorine chemistry and observations from TGO's Atmospheric Chemistry Suite. We found that the heterogeneous scheme significantly improved the modeled HCl seasonal, latitudinal, and vertical distribution, supporting a crucial role for heterogeneous chemistry in Mars' chlorine cycle. Remaining discrepancies show that further work is needed to characterize the exact aerosol reactions involved.Global Transport of Chlorine Species in the Martian Atmosphere and the Resulting Surface Distribution of Perchlorates
Journal of Geophysical Research: Planets American Geophysical Union 130:3 (2025) e2024JE008537
Abstract:
Recent observations by instruments aboard the ExoMars Trace Gas Orbiter (TGO) have revealed the seasonal presence of hydrogen chloride ( HCl $\text{HCl}$ ) in the Martian atmosphere. This discovery may have important implications for Martian photochemistry as chlorine species are chemically active, and it may provide a link between the atmosphere and known surface reservoirs of chlorine. However, the global distribution of atmospheric HCl $\text{HCl}$ is unknown beyond the very sparse TGO observations, and the source and sink processes driving the observed variability of HCl $\text{HCl}$ are not currently understood. We used a Martian global climate model to investigate, for the first time, the spatial distribution of chlorine species in the Martian atmosphere, and the resulting distribution of surface perchlorates formed via adsorption of atmospheric chlorine species. We adapted an existing Martian photochemical scheme to include gas‐phase chlorine chemistry with HCl as the source species, and the resulting atmospheric perchloric acid was allowed to deposit onto the Martian surface via a heterogeneous adsorption scheme. We found that odd‐oxygen ( O , O 3 $\mathrm{O},{\mathrm{O}}_{3}$ ) and odd‐hydrogen ( H , OH , HO 2 $\mathrm{H},\text{OH},{\text{HO}}_{2}$ ) species play a major role in controlling the distribution of atmospheric chorine species. Surface perchlorate deposition was found to occur preferentially at high latitudes; in the tropics, the perchlorate distribution was anti‐correlated with surface thermal inertia and agreed qualitatively with observations of surface chlorine. Our model predicted a relative enhancement of HCl in polar regions, but it did not reproduce the observed strong seasonality of HCl, suggesting that heterogeneous chemistry may be required to explain the observed chlorine cycle.Atmospheric Gravity Waves in Mars' Lower Atmosphere: Nadir Observations From OMEGA/Mars Express Data
Journal of Geophysical Research Planets American Geophysical Union (AGU) 130:3 (2025)
Lucy L′Ralph In-flight Calibration and Results at (152830) Dinkinesh
The Planetary Science Journal IOP Publishing 6:1 (2025) 7
Abstract:
The L’Ralph instrument is a key component of NASA’s Lucy mission, intended to provide spectral image data of multiple Jupiter Trojans. The instrument operates from ∼0.35 to 4 μm using two focal plane assemblies: a 350–950 nm multispectral imager, Multi-spectral Visible Imaging Camera (MVIC), and a 0.97–4 μm imaging spectrometer, Linear Etalon Imaging Spectral Array (LEISA). Instrument calibration was established through ground testing before launch and has been monitored during cruise utilizing internal calibration sources and stellar targets. In-flight data have shown that the instrument thermal performance is exceeding expectations, allowing for early updates to LEISA radiometric and pointing calibrations. MVIC radiometric performance remains stable more than 3 yr since launch. The serendipitous identification of a new flyby target, (152830) Dinkinesh, allowed testing of instrument performance and interleaved LEISA and MVIC acquisitions on an asteroid target. Both MVIC and LEISA obtained data of Dinkinesh and its moon, Selam, demonstrating that they show good spectral agreement with an S- or Sq-type asteroid, along with evidence of a 3 μm absorption feature.The Peregrine Ion Trap Mass Spectrometer (PITMS): Results from a CLPS-delivered Mass Spectrometer
The Planetary Science Journal American Astronomical Society 6:1 (2025) 14