Heat conduction through the support pillars in vacuum glazing

Solar Energy Elsevier Sci Ltd, Exeter, United Kingdom 63 (1998) 6

Authors:

CF Wilson, TM Simko, RE Collins

Abstract:

Vacuum glazing consists of two glass sheets with a narrow internal evacuated space. The separation of the sheets under the influence of atmospheric pressure is maintained by an array of small support pillars. The thermal resistances associated with the heat flow through individual pillars, and through the pillar array, are calculated using a simple analytic method, and by more complex finite element models. The results of both approaches are in very good agreement, and are validated by comparison with experimental data. It is shown that, for many purposes, the amount of heat which flows through the pillars can be determined without incurring significant errors by assuming that the heat flow is uniformly distributed over the area of the glass. Finite element modelling, and a superposition method, are used to determine the temperature distribution on the external surfaces of the glass sheets due to pillar conduction. Again the results obtained with both approaches are in very good agreement. An approximate method is described for calculating the magnitude of these temperature non- uniformities for all practical glazing parameters. Vacuum glazing consists of two glass sheets with a narrow internal evacuated space. The separation of the sheets under the influence of atmospheric pressure is maintained by an array of small support pillars. The thermal resistances associated with the heat flow through individual pillars, and through the pillar array, are calculated using a simple analytic method, and by more complex finite element models. The results of both approaches are in very good agreement, and are validated by comparison with experimental data. It is shown that, for many purposes, the amount of heat which flows through the pillars can be determined without incurring significant errors by assuming that the heat flow is uniformly distributed over the area of the glass. Finite element modelling, and a superposition method, are used to determine the temperature distribution on the external surfaces of the glass sheets due to pillar conduction. Again the results obtained with both approaches are in very good agreement. An approximate method is described for calculating the magnitude of these temperature non- uniformities for all practical glazing parameters.

Radiative transfer models for Galileo NIMS studies of the atmosphere of Jupiter

ADV SPACE RES 19:8 (1997) 1149-1158

Authors:

PGJ Irwin, SB Calcutt, FW Taylor

Abstract:

Scientific results from NIMS observations of Venus have been extensively reported in the literature, while those of Jupiter have, at the time of writing, just barely commenced. The planning and interpretation of studies of these planets, with their massive atmospheres and exotic compositions (by terrestrial standards), requires a comprehensive treatment of radiative transfer in both. This paper describes work done at Oxford to develop the underlying theory and practical radiative transfer schemes, with particular reference to the NIMS wavelength range, spectral resolution, and scientific objectives for Jupiter. Equivalent work for Venus has already been reported in the literature (e.g. Kamp and Taylor, 1990) and will not be covered in detail here. (C) 1997 COSPAR. Published by Elsevier Science Ltd.

VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission

Proceedings of SPIE SPIE, the international society for optics and photonics 2819 (1996) 66-77

Authors:

Francis M Reininger, Angioletta Coradini, Fabrizio Capaccioni, MT Capria, Priscilla Cerroni, MC De Sanctis, G Magni, Pierre Drossart, Maria A Barucci, D Bockelee-Morvan, Jean-Michel Combes, J Crovisier, T Encrenaz, Jean-Michel Reess, Alain Semery, Didier Tiphene, Gabriele Arnold, Uri Carsenty, Harald Michaelis, Stefano Mottola, Gerhard Neukum, G Peters, Ulrich Schade, Fredric W Taylor, Simon B Calcutt, Tim Vellacott, P Venters, RE Watkins, Giancarlo Bellucci, Vittorio Formisano, Francesco Angrilli, Gianandrea Bianchini, Bortolino Saggin, E Bussoletti, L Colangeli, Vito Mennella, S Fonti, Jean-Pierre Bibring, Yves Langevin, B Schmitt, M Combi, U Fink, Thomas B McCord, Ip, Robert W Carlson, Donald E Jennings

ISO LWS measurement of the far-infrared spectrum of Saturn

Astronomy and Astrophysics 315:2 (1996)

Authors:

GR Davis, MJ Griffin, DA Naylor, RG Oldham, BM Swinyard, PAR Ade, SB Calcutt, T Encrenaz, T De Graauw, D Gautier, PGJ Irwin, E Lellouch, GS Orton, C Armand, M Burgdorf, A Di Giorgio, D Ewart, C Gry, KJ King, T Lim, S Molinari, M Price, S Sidher, A Smith, D Texier, N Trams, SJ Unger

Abstract:

The spectrum of Saturn from 43 to 197 μm was measured with the ISO Long Wavelength Spectrometer (LWS) during the performance verification phase of the mission. The measurements were made using the LWS in grating mode, with spectral resolutions of 0.29 μm from 43 to 90 μm and 0.6 μm from 90 to 197 μm. The spectrum was compared with an atmospheric radiative-transfer model and four results were obtained: first, the slope of the measured continuum within each detector passband is in good agreement with the model; second, absorption features due to ammonia and phosphine were unambiguously detected, and all detected features were attributed to these two molecules; third, the ammonia absorption features agree reasonably well with the nominal model (based on Voyager IRIS measurements); and fourth, the phosphine absorption features disagree with the nominal model. Superior agreement with the measured spectrum was obtained with a modified PH3 profile in which the tropospheric mixing ratio was increased to 7 × 10-6 and the cutoff due to photodissociation was lowered to 300 mbar. These results are based on trial observations during performance verification of the LWS, and provide an indication of the results we expect to obtain when the spectrum of Saturn is measured comprehensively later in the mission.

Remote sounding of the Martian atmosphere in the context of the InterMarsNet mission: General circulation and meteorology

PLANET SPACE SCI 44:11 (1996) 1347-1360

Authors:

FW Taylor, SB Calcutt, PGJ Irwin, DJ McCleese, JT Schofield, DO Muhleman, RT Clancy, CB Leovy

Abstract:

A concept has been developed for a remote sensing experiment to investigate the physics of the Martian atmosphere from a spin-stabilized orbiter, like that planned for the InterMarsNet mission. Using coincident infrared and microwave channels and limb-to-limb scanning, it can map the planet much more extensively than previously in temperature atmospheric dust loading, and humidity. When combined with one or more surface stations measuring the same variables, the sounder experiment can contribute to major progress in understanding the general circulation and dust and water cycles of the atmosphere of Mars, and the characterization of medium-scale meteorological systems. Copyright (C) 1996 Elsevier Science Ltd