Line-by-line analysis of Neptune's near-IR spectrum observed with Gemini/NIFS and VLT/CRIRES
Icarus 227 (2014) 37-48
Abstract:
New line data describing the absorption of CH4 and CH3D from 1.26 to 1.71μm (WKMC-80K, Campargue, A., Wang, L., Mondelain, D., Kassi, S., Bézard, B., Lellouch, E., Coustenis, A., de Bergh, C., Hirtzig, M., Drossart, P. [2012]. Icarus 219, 110-128) have been applied to the analysis of Gemini-N/NIFS observations of Neptune made in 2009 and VLT/CRIRES observations made in 2010. The new line data are found to greatly improve the fit to the observed spectra and present a considerable advance over previous methane datasets. The improved fits lead to an empirically derived wavelength-dependent correction to the scattering properties of the main observable cloud deck at 2-3bars that is very similar to the correction determined for Uranus' lower cloud using the same line dataset by Irwin et al. (Irwin, P.G.J., de Bergh, C., Courtin, R., Bézard, B., Teanby, N.A., Davis, G.R., Fletcher, L.N., Orton, G.S., Calcutt, S.B., Tice, D., Hurley, J. [2012]. Icarus 220, 369-382). By varying the abundance of CH3D in our simulations, analysis of the Gemini/NIFS observations leads to a new determination of the CH3D/CH4 ratio for Neptune of 3.0-0.9+1.0×10-4, which is smaller than previous determinations, but is identical (to within error) with the CH3D/CH4 ratio of 2.9-0.5+0.9×10-4 derived by a similar analysis of Gemini/NIFS observations of Uranus made in the same year. Thus it appears that the atmospheres of Uranus and Neptune have an almost identical D/H ratio, which suggests that the icy planetisimals forming these planets came from the same source reservoir, or a reservoir that was well-mixed at the locations of ice giant formation, assuming complete mixing between the atmosphere and interior of both these planets. VLT/CRIRES observations of Neptune have also been analysed with the WKMC-80K methane line database, yielding very good fits, with little evidence for missing absorption features. The CRIRES spectra indicate that the mole fraction of CO at the 2-3bar level must be substantially less than its estimated stratospheric value of 1×10-6, which suggests that the predominant source of CO in Neptune's atmosphere is external, through the influx of micrometeorites and comets, although these data cannot rule out an additional internal source. © 2013 Elsevier Inc.The mass-metallicity relation at z 1.4 revealed with Subaru/FMOS
Monthly Notices of the Royal Astronomical Society 437:4 (2014) 3647-3663
Abstract:
We present a stellar mass-metallicity relation at z ~ 1.4 with an unprecedentedly large sample of ~340 star-forming galaxies obtained with FibreMulti-Object Spectrograph (FMOS) on the Subaru Telescope. We observed K-band selected galaxies at 1.2 ≤ zph ≤ 1.6 in the Subaru XMM-Newton Deep Survey/Ultra Deep Survey fields with M*> 109.5M⊙, and expected F(Hα) > 5 × 10-17 erg s-1 cm-2. Among the observed ~1200 targets, 343 objects show significant Ha emission lines. The gas-phase metallicity is obtained from [N II] λ6584/Hα line ratio, after excluding possible active galactic nuclei. Due to the faintness of the [N II] λ6584 lines, we apply the stacking analysis and derive the mass-metallicity relation at z ~ 1.4. Our results are compared to past results at different redshifts in the literature. The mass-metallicity relation at z ~ 1.4 is located between those at z ~ 0.8 and z ~ 2.2; it is found that the metallicity increases with decreasing redshift from z ~ 3 to z ~ 0 at fixed stellar mass. Thanks to the large size of the sample, we can study the dependence of the mass-metallicity relation on various galaxy physical properties. The average metallicity from the stacked spectra is close to the local Fundamental Metallicity Relation (FMR) in the higher metallicity part but >0.1 dex higher in metallicity than the FMR in the lower metallicity part.We find that galaxies with larger E(B -V), B -R and R -H colours tend to show higher metallicity by ~0.05 dex at fixed stellar mass. We also find relatively clearer size dependence that objects with smaller half-light radius tend to show higher metallicity by ~0.1 dex at fixed stellar mass, especially in the low-mass part. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.Venus express: Lessons from 8 years of science operations
13th International Conference on Space Operations, SpaceOps 2014 (2014)
Abstract:
The Venus Express spacecraft was launched in November 2005. This first European mission to Venus arrived at the planet in April 2006, and within a month had completed on-orbit commissioning and was returning science data to Earth. After four mission extensions and eight years, the spacecraft continues to operate successfully. The end of the mission is anticipated to be in 2014, when the on-board fuel supplies are finally exhausted and the required orbit around Venus can no longer be maintained. This paper discusses the lessons learned by the Venus Express Science Operations Centre (VSOC) over the course of the eight year mission, and briefly discusses the plans for the end of the mission.The Gemini NICI Planet-Finding Campaign: The Frequency of Planets around Young Moving Group Stars
(2013)
The Gemini NICI Planet-Finding Campaign: The Frequency of Planets around Young Moving Group Stars
ArXiv 1309.1462 (2013)