Climatology and first-order composition estimates of mesospheric clouds from Mars Climate Sounder limb spectra

Icarus 222:1 (2013) 342-356

Authors:

E Sefton-Nash, NA Teanby, L Montabone, PGJ Irvin, J Hurley, SB Calcutt

A new experimental setup for making thermal emission measurements in a simulated lunar environment

Review of Scientific Instruments AIP Publishing 83:12 (2012) 124502

Authors:

Ian Thomas, BT Greenhagen, Neil Bowles, Kerri Donaldson Hanna, J Temple, Simon Calcutt

Abstract:

One of the key problems in determining lunar surface composition for thermal-infrared measurements is the lack of comparable laboratory-measured spectra. As the surface is typically composed of fine-grained particulates, the lunar environment induces a thermal gradient within the near sub-surface, altering the emission spectra: this environment must therefore be simulated in the laboratory, considerably increasing the complexity of the measurement. Previous measurements have created this thermal gradient by either heating the cup in which the sample sits or by illuminating the sample using a solar-like source. This is the first setup able to measure in both configurations, allowing direct comparisons to be made between the two. Also, measurements across a wider spectral range and at a much higher spectral resolution can be acquired using this new setup. These are required to support new measurements made by the Diviner Lunar Radiometer, the first multi-spectral thermal-infrared instrument to orbit the Moon. Results from the two different heating methods are presented, with measurements of a fine-grained quartz sample compared to previous similar measurements, plus measurements of a common lunar highland material, anorthite. The results show that quartz gives the same results for both methods of heating, as predicted by previous studies, though the anorthite spectra are different. The new calibration pipeline required to convert the raw data into emissivity spectra is described also

Black hole mass and eddington ratio distribution functions of X-ray-selected broad-line AGNs at z ∼ 1.4 in the Subaru XMM-Newton Deep Field

Astrophysical Journal 761:2 (2012)

Authors:

K Nobuta, M Akiyama, Y Ueda, MG Watson, J Silverman, K Hiroi, K Ohta, F Iwamuro, K Yabe, N Tamura, Y Moritani, M Sumiyoshi, N Takato, M Kimura, T Maihara, G Dalton, I Lewis, D Bonfield, H Lee, E Curtis-Lake, E MacAulay, F Clarke, K Sekiguchi, C Simpson, S Croom, M Ouchi, H Hanami, T Yamada

Abstract:

In order to investigate the growth of supermassive black holes (SMBHs), we construct the black hole mass function (BHMF) and Eddington ratio distribution function (ERDF) of X-ray-selected broad-line active galactic nuclei (AGNs) at z ∼ 1.4 in the Subaru XMM-Newton Deep Survey (SXDS) field. A significant part of the accretion growth of SMBHs is thought to take place in this redshift range. Black hole masses of X-ray-selected broad-line AGNs are estimated using the width of the broad Mg II line and 3000 Å monochromatic luminosity. We supplement the Mg II FWHM values with the Hα FWHM obtained from our NIR spectroscopic survey. Using the black hole masses of broad-line AGNs at redshifts between 1.18 and 1.68, the binned broad-line AGN BHMFs and ERDFs are calculated using the V maxmethod. To properly account for selection effects that impact the binned estimates, we derive the corrected broad-line AGN BHMFs and ERDFs by applying the maximum likelihood method, assuming that the ERDF is constant regardless of the black hole mass. We do not correct for the non-negligible uncertainties in virial BH mass estimates. If we compare the corrected broad-line AGN BHMF with that in the local universe, then the corrected BHMF at z = 1.4 has a higher number density above 108 M⊙but a lower number density below that mass range. The evolution may be indicative of a downsizing trend of accretion activity among the SMBH population. The evolution of broad-line AGN ERDFs from z = 1.4 to 0 indicates that the fraction of broad-line AGNs with accretion rates close to the Eddington limit is higher at higher redshifts. © 2012. The American Astronomical Society. All rights reserved..

First observation in the south of titan's far-infrared 220 cm-1 cloud

Astrophysical Journal Letters 761:1 (2012)

Authors:

DE Jennings, CM Anderson, RE Samuelson, FM Flasar, CA Nixon, GL Bjoraker, PN Romani, RK Achterberg, V Cottini, BE Hesman, VG Kunde, RC Carlson, R De Kok, A Coustenis, S Vinatier, G Bampasidis, NA Teanby, SB Calcutt

Abstract:

An emission feature at 220 cm-1 which has been attributed to a cloud of condensed material in Titan's winter stratosphere has been seen for the first time in the south. This feature had previously been found only at high northern latitudes during northern winter and spring. The material emitting at 220 cm-1, as yet unidentified, may be volatiles associated with nitrile gases that accumulate in the absence of ultraviolet sunlight. Not detected as recently as 2012 February, the 220 cm-1 feature clearly appeared at the south pole in Cassini spectra recorded on 2012 July 24, indicating a rapid onset of the emission. This is the first indication of the winter buildup of condensation in the southern stratosphere that has been expected as the south pole moves deeper into shadow. In the north the 220 cm-1 feature continued to decrease in intensity with a half-life of 3 years. © 2012. The American Astronomical Society. All rights reserved.

15x optical zoom and extreme optical image stabilisation: Diffraction limited integral field spectroscopy with the SWIFT spectrograph

Proceedings of SPIE - The International Society for Optical Engineering 8446 (2012)

Authors:

M Tecza, N Thatte, F Clarke, J Lynn, D Freeman, J Roberts, R Dekany

Abstract:

When commissioned in November 2008 at the Palomar 200 inch Hale Telescope, the Oxford SWIFT I&z band integral field spectrograph, fed by the adaptive optics system PALAO, provided a wide (3x) range of spatial resolutions: three plate scales of 235 mas, 160 mas, and 80 mas per spaxel over a contiguous field-of-view of 89x44 pixels. Depending on observing conditions and guide star brightness we can choose a seeing limited scale of 235 mas per spaxel, or 160 mas and 80 mas per spaxel for very bright guide star AO with substantial increase of enclosed energy. Over the last two years PALAO was upgraded to PALM-3000: an extreme, high-order adaptive optics system with two deformable mirrors with more than 3000 actuators, promising diffraction limited performance in SWIFT's wavelength range. In order to take advantage of this increased spatial resolution we upgraded SWIFT with new pre-optics allowing us to spatially Nyquist sample the diffraction limited PALM-3000 point spread function with 16 mas resolution, reducing the spaxel scale by another factor of 5x. We designed, manufactured, integrated and tested the new pre-optics in the first half of 2011 and commissioned it in December 2011. Here we present the opto-mechanical design and assembly of the new scale changing optics, as well as laboratory and on-sky commissioning results. In optimal observing conditions we achieve substantial Strehl ratios, delivering the near diffraction limited spatial resolution in the I&z bands. © 2012 SPIE.