Modeling gravitational instabilities in self-gravitating protoplanetary disks with adaptive mesh refinement techniques

Astronomy & Astrophysics EDP Sciences 579 (2015) a32

Authors:

Tim Lichtenberg, Dominik RG Schleicher

Coordinated hubble space telescope and Venus express observations of Venus' upper cloud deck

Icarus Elsevier 258 (2015) 309-336

Authors:

KL Jessup, E Marcq, F Mills, A Mahieux, S Limaye, Colin Wilson, M Allen, J-L Bertaux, W Markiewicz, T Roman, A-C Vandaele, V Wilquet, Y Yung

Abstract:

Hubble Space Telescope Imaging Spectrograph (HST/STIS) UV observations of Venus' upper cloud tops were obtained between 20N and 40S latitude on December 28, 2010; January 22, 2011 and January 27, 2011 in coordination with the Venus Express (VEx) mission. The high spectral (0.27nm) and spatial (40-60km/pixel) resolution HST/STIS data provide the first direct and simultaneous record of the latitude and local time distribution of Venus' 70-80km SO and SO2 (SOx) gas density on Venus' morning quadrant. These data were obtained simultaneously with (a) VEx/SOIR occultation and/or ground-based James Clerk Maxwell Telescope sub-mm observations that record respectively, Venus' near-terminator SO2 and dayside SOx vertical profiles between ~75 and 100km; and (b) 0.36μm VEx/VMC images of Venus' cloud-tops. Updating the (Marcq, E. et al. [2011]. Icarus 211, 58-69) radiative transfer model SO2 gas column densities of ~2-10μm-atm and ~0.4-1.8μm-atm are retrieved from the December 2010 and January 2011 HST observations, respectively on Venus' dayside (i.e., at solar zenith angles (SZA)<60°); SO gas column densities of 0.1-0.11μm-atm, 0.03-0.31μm-atm and 0.01-0.13μm-atm are also retrieved from the respective December 28, 2010, January 22, 2011 and January 27, 2011 HST observations. A decline in the observed low-latitude 0.24 and 0.36μm cloud top brightness paralleled the declining SOx gas densities. On December 28, 2010 SO2 VMR values ~280-290ppb are retrieved between 74 and 81km from the HST and SOIR data obtained near Venus' morning terminator (at SZAs equal to 70° and 90°, respectively); these values are 10× higher than the HST-retrieved January 2011 near terminator values. Thus, the cloud top SO2 gas abundance declined at all local times between the three HST observing dates. On all dates the average dayside SO2/SO ratio inferred from HST between 70 and 80km is higher than that inferred from the sub-mm the JCMT data above 84km confirming that SOx photolysis is more efficient at higher altitudes. The direct correlation of the SOx gases provides the first clear evidence that SOx photolysis is not the only source for Venus' 70-80km sulfur reservoir. The cloud top SO2 gas density is dependent in part on the vertical transport of the gas from the lower atmosphere; and the 0.24μm cloud top brightness levels are linked to the density of the sub-micron haze. Thus, the new results may suggest a correlation between Venus' cloud-top sub-micron haze density and the vertical transport rate. These new results must be considered in models designed to simulate and explore the relationship between Venus' sulfur chemistry cycle, H2SO4 cloud formation rate and climate evolution. Additionally, we present the first photochemical model that uniquely tracks the transition of the SO2 atmosphere from steady to non-steady state with increasing SZA, as function of altitude within Venus' mesosphere, showing the photochemical and dynamical basis for the factor of ~2 enhancements in the SOx gas densities observed by HST near the terminator above that observed at smaller SZA. These results must also be considered when modeling the long-term evolution of Venus' atmospheric chemistry and dynamics.

EVOLUTION OF THE FAR-INFRARED CLOUD AT TITAN’S SOUTH POLE

The Astrophysical Journal Letters American Astronomical Society 804:2 (2015) l34

Authors:

Donald E Jennings, RK Achterberg, V Cottini, CM Anderson, FM Flasar, CA Nixon, GL Bjoraker, VG Kunde, RC Carlson, E Guandique, MS Kaelberer, JS Tingley, SA Albright, ME Segura, R de Kok, A Coustenis, S Vinatier, G Bampasidis, NA Teanby, S Calcutt

Mars methane analogue mission: Mission simulation and rover operations at Jeffrey Mine and Norbestos Mine Quebec, Canada

Advances in Space Research Elsevier 55:10 (2015) 2414-2426

Authors:

A Qadi, E Cloutis, C Samson, L Whyte, A Ellery, JF Bell, G Berard, A Boivin, E Haddad, J Lavoie, W Jamroz, R Kruzelecky, A Mack, P Mann, K Olsen, M Perrot, D Popa, T Rhind, R Sharma, J Stromberg, K Strong, A Tremblay, R Wilhelm, B Wing, B Wong

Intercomparison of water vapour and temperature retrievals between the CSA's ACE-FTS and the UCAR/NSPO's COSMIC/FORMOSAT-3 satellites, and presentation of anew algorithm for retrieving temperature

Proceedings of the International Astronautical Congress, IAC 4 (2015) 2941-2944

Authors:

KS Olsen, GC Toon, CD Boone, PE Sheese, KA Walker, K Strong

Abstract:

The Canadian Space Agency's (CSA) Atmospheric Chemistry Experiment Fourier transform spectrometer (ACEFTS) onboard SCISAT-1 is a high-resolution Fourier transform spectrometer operating in solar occultation mode in Earth-orbit. ACE-FTS retrieves vertical profiles of temperature, pressure, and volume mixing ratio of 38 molecular species, and relies on international cooperation to validate its data products. Data availability from international Earth-observing missions is vital to interpreting domestic results, and ACE-FTS validation uses data products from 12 instruments and 7 space agencies. Here, we present the latest data set to be incorporated into the ACE-FTS data validation campaign: the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), known as FORMOSAT-3 in Taiwan. A collaboration between Taiwan's National Space Organization (NSPO) and the University Corporation for Atmospheric Research (UCAR) in the US, COSMIC is a group of six small satellites that use signals from GPS satellites to measure water vapour pressure and temperature via radio occultation. We present comparisons with ACE-FTS of both data products in the lower stratosphere and upper troposphere, and a comparison between temperature profiles retrieved by ACE-FTS, COSMIC, and a newly developed algorithm applied to ACEFTS spectra. The new algorithm to retrieve vertical profiles of temperature and pressure from high-resolution solar transmission spectra was developed in support of a partnership between the CSA and NASA's Jet Propulsion Laboratory to place an FTS in orbit around Mars as part of the ESA and NASA's joint ExoMars mission (NASA since withdrew). This algorithm exploits the temperature dependence of individual absorption lines in an infrared vibration-rotation band. ACE-FTS makes multiple measurements during an occultation, separated by 1.5-5 km, and we analyze 10 CO2 vibration-rotation bands at each altitude, each with a different usable altitude range. Retrieved profiles have no seasonal or zonal biases, but do have a warm bias in the stratosphere and a cold bias in the mesosphere, with mean differences less than 5 K when compared to ACE-FTS. COSMIC comparisons are done below 40 km where we have the best agreement with ACE and mean differences are less than 3 K. H2O comparisons between ACE-FTS and COSMIC show good agreement in the stratosphere, and higher concentrations retrieved by COSMIC in the troposphere.