Evidence for an intrinsic luminosity–decay correlation in GRB radio afterglows

Monthly Notices of the Royal Astronomical Society Oxford University Press 542:3 (2025) 2421-2430

Authors:

SPR Shilling, SR Oates, DA Kann, J Patel, JL Racusin, B Cenko, R Gupta, M Smith, L Rhodes, KR Hinds, M Nicholl, A Breeveld, M Page, M De Pasquale, B Gompertz

Abstract:

We present the discovery of a correlation, in a sample of 16 gamma-ray burst 8.5 GHz radio afterglows, between the intrinsic luminosity measured at 10 d in the rest frame, , and the average rate of decay past this time, . The correlation has a Spearman’s rank coefficient of at a significance of and a linear regression fit of . This finding suggests that more luminous radio afterglows have higher average rates of decay than less luminous ones. We use a Monte Carlo simulation to show the correlation is not produced by chance or selection effects at a confidence level of . Previous studies found this relation in optical/UV, X-ray, and GeV afterglow light curves, and we have now extended it to radio light curves. The Spearman’s rank coefficients and the linear regression slopes for the correlation in each waveband are all consistent within . We discuss how these new results in the radio band support the effects of observer viewing geometry, and time-varying microphysical parameters, as possible causes of the correlation as suggested in previous works.

The Radio Spectral Energy Distribution and Star Formation Calibration in MIGHTEE-COSMOS Highly Star-forming Galaxies at 1.5 < z < 3.5

The Astrophysical Journal American Astronomical Society 989:1 (2025) 44

Authors:

Fatemeh Tabatabaei, Maryam Khademi, Matt J Jarvis, Russ Taylor, Imogen H Whittam, Fangxia An, Reihaneh Javadi, Eric J Murphy, Mattia Vaccari

Abstract:

Studying the radio spectral energy distribution (SED) of distant galaxies is essential for understanding their assembly and evolution over cosmic time. We present rest-frame radio SEDs of a sample of 160 star-forming galaxies at 1.5 < z < 3.5 in the Cosmic Evolution Survey field as part of the MeerKAT International GHz Tiered Extragalactic Exploration project. MeerKAT observations combined with archival Very Large Array and Giant Metrewave Radio Telescope data allow us to determine the integrated mid-radio (ν = 1–10 GHz) continuum (MRC) luminosity and magnetic field strength. A Bayesian method is used to model the SEDs and to separate the free–free and synchrotron emission. We also calibrate the star formation rate (SFR) in radio both directly through SED analysis and indirectly through the infrared–radio correlation (IRRC). With a mean value of αnt ≃ 0.7, the synchrotron spectral index flattens with both redshift and specific SFR, indicating that cosmic rays are more energetic in the early Universe due to higher star formation activity. The magnetic field strength increases with redshift, B ∝ (1 + z)(0.7±0.1), and SFR as B ∝ SFR0.3, suggesting a small-scale dynamo acting as its main amplification mechanism. Taking into account the evolution of the SEDs, the IRRC is redshift invariant, and it does not change with stellar mass at 1.5 < z < 3.5, although the correlation deviates from linearity. Similarly, we show that the SFR traced using the integrated MRC luminosity is redshift invariant.

A relativistic jet from a neutron star breaking out of its natal supernova remnant

(2025)

Authors:

KVS Gasealahwe, K Savard, IM Monageng, I Heywood, RP Fender, PA Woudt, J English, JH Matthews, H Whitehead, FJ Cowie, AK Hughes, P Saikia, SE Motta

Commensal Transient Searches with MeerKAT in Gamma-Ray Burst and Supernova Fields

The Astrophysical Journal American Astronomical Society 988:2 (2025) 227

Authors:

SI Chastain, AJ van der Horst, A Horesh, A Rowlinson, A Andersson, R Diretse, M Vaccari, RP Fender, PA Woudt

Abstract:

The sensitivity and field of view of the MeerKAT radio telescope provide excellent opportunities for commensal transient searches. We carry out a commensal transient search in supernova and short gamma-ray burst fields using methodologies established by S. I. Chastain et al. We search for transients in MeerKAT L-band images with integration times of 30 minutes, finding 13 variable sources. We compare these sources to the VLASS and RACS survey data, and examine possible explanations for the variability. Additionally, for one of these sources we examine archival Chandra ACIS data. We find that 12 of these sources are consistent with variability due to interstellar scintillation. The remaining source could possibly have some intrinsic variability. We also split the MeerKAT L band into upper and lower halves, and search for transients in images with an integration time of 8 s. We find a source with a duration of 8–16 s that is highly polarized at the lowest frequencies. This source is spatially coincident with a star detected by the Transiting Exoplanet Survey Satellite. We conclude that this source may be consistent with a stellar flare. Finally, we calculate accurate upper and lower limits on the transient rate using transient simulations.

A relativistic jet from a neutron star breaking out of its natal supernova remnant

Monthly Notices of the Royal Astronomical Society Oxford University Press 541:4 (2025) 4011-4024

Authors:

KVS Gasealahwe, K Savard, IM Monageng, I Heywood, RP Fender, PA Woudt, J English, JH Matthews, H Whitehead, FJ Cowie, AK Hughes, P Saikia, SE Motta

Abstract:

The young neutron star X-ray binary, Cir X-1, resides within its natal supernova remnant and experiences ongoing outbursts every 16.5 d, likely due to periastron passage in an eccentric orbit. We present the deepest ever radio image of the field, which reveals relativistic jet-punched bubbles that are aligned with the mean axis of the smaller scale jets observed close to the X-ray binary core. We are able to measure the minimum energy for the bubble, which is around = erg. The nature and morphological structure of the source were investigated through spectral index mapping and numerical simulations. The spectral index map reveals a large fraction of the nebula’s radio continuum has a steep slope, associated with optically thin synchrotron emission, although there are distinct regions with flatter spectra. Our data are not sensitive enough to measure the spectral index of the protruding bubbles. We used the pluto code to run relativistic hydrodynamic simulations to try and qualitatively reproduce the observations with a combined supernova-plus-jet system. We are able to do so using a simplified model in which the asymmetrical bubbles are best represented by supernova explosion which is closely followed (within 100 yr) by a phase of very powerful jets lasting less than 1000 yr. These are the first observations revealing the initial breakout of neutron star jets from their natal supernova remnant, and further support the scenario in which Cir X-1 is a younger relation of the archetypal jet source SS433.