Slow and steady: long-term evolution of the 76-s pulsar J0901−4046

Monthly Notices of the Royal Astronomical Society Oxford University Press 540:3 (2025) 2131-2145

Authors:

MC Bezuidenhout, NDR Bhat, M Caleb, LN Driessen, F Jankowski, M Kramer, V Morello, I Pastor-Marazuela, K Rajwade, J Roy, BW Stappers, M Surnis, J Tian

Abstract:

PSR J0901−4046, a likely radio-loud neutron star with a period of 75.88 s, challenges conventional models of neutron star radio emission. Here, we showcase results from 46 h of follow-up observations of PSR J0901−4046 using the MeerKAT, Murriyang, Giant Metrewave Radio Telescope, and Murchison Widefield Array radio telescopes. We demonstrate the intriguing stability of the source’s timing solution over more than 3 yr, leading to an RMS arrival-time uncertainty of just of the rotation period. Furthermore, non-detection below 500 MHz may indicate a low-frequency turnover in the source’s spectrum, while no secular decline in the flux density of the source over time, as was apparent from previous observations, has been observed. Using high time-resolution MeerKAT data, we demonstrate two distinct quasi-periodic oscillation modes present in single pulses, with characteristic time-scales of 73 and 21 ms. We also observe a statistically significant change in the relative prevalence of distinct pulse morphologies compared to previous observations, possibly indicating a shift in the magnetospheric composition over time. Finally, we show that the W pulse width is nearly constant from 544 to 4032 MHz, consistent with zero radius-to-frequency mapping. The very short duty cycle () is more similar to radio pulsars with periods >5 s than to radio-loud magnetars. This, along with the lack of magnetar-like outbursts or timing glitches, complicates the identification of the source with ultralong period magnetar models.

Colloquium: The Cosmic Dipole Anomaly

(2025)

Authors:

Nathan Secrest, Sebastian von Hausegger, Mohamed Rameez, Roya Mohayaee, Subir Sarkar

Gone with the Wind: JWST-MIRI Unveils a Strong Outflow from the Quiescent Stellar-Mass Black Hole A0620-00

(2025)

Authors:

Zihao Zuo, Gabriele Cugno, Joseph Michail, Elena Gallo, David M Russell, Richard M Plotkin, Fan Zou, M Cristina Baglio, Piergiorgio Casella, Fraser J Cowie, Rob Fender, Poshak Gandhi, Sera Markoff, Federico Vincentelli, Fraser Lewis, Jon M Miller, James CA Miller-Jones, Alexandra Veledina

The Evolutionary Map of the Universe: A new radio atlas for the southern hemisphere sky

Publications of the Astronomical Society of Australia Cambridge University Press 42 (2025) e071

Authors:

Andrew Hopkins, Anna Kapinska, Joshua Marvil, Tessa Vernstrom, Jordan Collier, Ray Norris, Yjan Gordon, Stefan Duchesne, Lawrence Rudnick, Nikhel Gupta, Ettore Carretti, Craig Anderson, Shi Dai, Gulay Gürkan, David Parkinson, Isabella Prandoni, Simone Riggi, Chandra Shekhar Saraf, Yik Ki Ma, Miroslav D Filipović, Grazia Umana, Benedict Bahr-Kalus, Bärbel Silvia Koribalski, Emil Lenc, Catherine Laura Hale

Abstract:

We present the Evolutionary Map of the Universe (EMU) survey conducted with the Australian Square Kilometre Array Pathfinder (ASKAP). EMU aims to deliver the touchstone radio atlas of the southern hemisphere. We introduce EMU and review its science drivers and key science goals, updated and tailored to the current ASKAP five-year survey plan. The development of the survey strategy and planned sky coverage is presented, along with the operational aspects of the survey and associated data analysis, together with a selection of diagnostics demonstrating the imaging quality and data characteristics. We give a general description of the value-added data pipeline and data products before concluding with a discussion of links to other surveys and projects and an outline of EMU’s legacy value.

Relativistic ejecta from stellar mass black holes: insights from simulations and synthetic radio images

Monthly Notices of the Royal Astronomical Society Oxford University Press 540:1 (2025) 1084-1106

Authors:

Katie Savard, James H Matthews, Rob Fender, Ian Heywood

Abstract:

We present numerical simulations of discrete relativistic ejecta from an X-ray binary (XRB) with initial conditions directly informed by observations. XRBs have been observed to launch powerful discrete plasma ejecta during state transitions, which can propagate up to parsec distances. Understanding these ejection events unveils new understanding of jet-launching, jet power, and jet–interstellar medium (ISM) interaction among other implications. Multifrequency quasi-simultaneous radio observations of ejecta from the black hole XRB MAXI J1820+070 produced both size and calorimetry constraints, which we use as initial conditions of a relativistic hydrodynamic simulation. We qualitatively reproduce the observed deceleration of the ejecta in a homogeneous ISM. Our simulations demonstrate that the ejecta must be denser than the ISM, the ISM be significantly low density, and the launch be extremely powerful, in order to propagate to the observed distances. The blob propagates and clears out a high-pressure low-density cavity in its wake, providing an explanation for this pre-existing low-density environment, as well as ‘bubble-like’ environments in the vicinity of XRBs inferred from other studies. As the blob decelerates, we observe the onset of instabilities and a long-lived reverse shock – these mechanisms convert kinetic to internal energy in the blob, responsible for in situ particle acceleration. We transform the outputs of our simulation into pseudo-radio images, incorporating the coverage of the MeerKAT and e-MERLIN telescopes from the original observations with real-sky background. Through this, we maximize the interpretability of the results and provide direct comparison to current data, as well as provide prediction capabilities.