A self-lensing binary massive black hole interpretation of quasi-periodic eruptions

(2021)

Authors:

Adam Ingram, Sara Motta, Suzanne Aigrain, Aris Karastergiou

GAMA/DEVILS: constraining the cosmic star formation history from improved measurements of the 0.3-2.2 mu m extragalactic background light

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 503:2 (2021) 2033-2052

Authors:

Soheil Koushan, Simon P Driver, Sabine Bellstedt, Luke J Davies, Aaron SG Robotham, Claudia del P Lagos, Abdolhosein Hashemizadeh, Danail Obreschkow, Jessica E Thorne, Malcolm Bremer, Bw Holwerda, Matt J Jarvis, Andrew M Hopkins, Malgorzata Siudek, Rogier A Windhorst

Abstract:

We present a revised measurement of the optical extragalactic background light (EBL), based on the contribution of resolved galaxies to the integrated galaxy light (IGL). The cosmic optical background radiation (COB), encodes the light generated by star formation, and provides a wealth of information about the cosmic star formation history (CSFH). We combine wide and deep galaxy number counts from the Galaxy And Mass Assembly survey (GAMA) and Deep Extragalactic VIsible Legacy Survey (DEVILS), along with the Hubble Space Telescope (HST) archive and other deep survey data sets, in nine multiwavelength filters to measure the COB in the range from 0.35  μm to 2.2  μm. We derive the luminosity density in each band independently and show good agreement with recent and complementary estimates of the optical-EBL from very high-energy (VHE) experiments. Our error analysis suggests that the IGL and γ-ray measurements are now fully consistent to within ∼10 per cent⁠, suggesting little need for any additional source of diffuse light beyond the known galaxy population. We use our revised IGL measurements to constrain the CSFH, and place amplitude constraints on a number of recent estimates. As a consistency check, we can now demonstrate convincingly, that the CSFH, stellar mass growth, and the optical-EBL provide a fully consistent picture of galaxy evolution. We conclude that the peak of star formation rate lies in the range 0.066–0.076 M⊙ yr−1 Mpc−3 at a lookback time of 9.1 to 10.9 Gyr.

A test of the cosmological principle with quasars

Astrophysical Journal Letters IOP Publishing 908:2 (2021) L51

Authors:

Nathan Secrest, Sebastian Von Hausegger, Mohamed Rameez, Roya Mohayaee, Subir Sarkar, Jacques Colin

Abstract:

We study the large-scale anisotropy of the universe by measuring the dipole in the angular distribution of a flux-limited, all-sky sample of 1.36 million quasars observed by the Wide-field Infrared Survey Explorer (WISE). This sample is derived from the new CatWISE2020 catalog, which contains deep photometric measurements at 3.4 and 4.6 μm from the cryogenic, post-cryogenic, and reactivation phases of the WISE mission. While the direction of the dipole in the quasar sky is similar to that of the cosmic microwave background (CMB), its amplitude is over twice as large as expected, rejecting the canonical, exclusively kinematic interpretation of the CMB dipole with a p-value of 5 × 10−7 (4.9σ for a normal distribution, one-sided), the highest significance achieved to date in such studies. Our results are in conflict with the cosmological principle, a foundational assumption of the concordance ΛCDM model.

Observations of a radio-bright, X-ray obscured GRS 1915+105

Monthly Notices of the Royal Astronomical Society Oxford University Press 503:1 (2021) 152-161

Authors:

Sara Motta, Jje Kajava, M Giustini, Dra Williams, M Del Santo, R Fender, Da Green, I Heywood, L Rhodes, A Segreto, G Sivakoff, Pa Woudt

Abstract:

The Galactic black hole transient GRS 1915+105 is famous for its markedly variable X-ray and radio behaviour, and for being the archetypal galactic source of relativistic jets. It entered an X-ray outburst in 1992 and has been active ever since. Since 2018 GRS 1915+105 has declined into an extended low-flux X-ray plateau, occasionally interrupted by multiwavelength flares. Here, we report the radio and X-ray properties of GRS 1915+105 collected in this new phase, and compare the recent data to historic observations. We find that while the X-ray emission remained unprecedentedly low for most of the time following the decline in 2018, the radio emission shows a clear mode change half way through the extended X-ray plateau in 2019 June: from low flux (∼3 mJy) and limited variability, to marked flaring with fluxes two orders of magnitude larger. GRS 1915+105 appears to have entered a low-luminosity canonical hard state, and then transitioned to an unusual accretion phase, characterized by heavy X-ray absorption/obscuration. Hence, we argue that a local absorber hides from the observer the accretion processes feeding the variable jet responsible for the radio flaring. The radio-X-ray correlation suggests that the current low X-ray flux state may be a signature of a super-Eddington state akin to the X-ray binaries SS433 or V404 Cyg.

A tidal disruption event coincident with a high-energy neutrino

Nature Astronomy Springer Nature 5:5 (2021) 510-518

Authors:

Robert Stein, Sjoert van Velzen, Robert Fender, Marek Kowalski

Abstract:

Cosmic neutrinos provide a unique window into the otherwise hidden mechanism of particle acceleration in astrophysical objects. The IceCube Collaboration recently reported the likely association of one high-energy neutrino with a flare from the relativistic jet of an active galaxy pointed towards the Earth. However a combined analysis of many similar active galaxies revealed no excess from the broader population, leaving the vast majority of the cosmic neutrino flux unexplained. Here we present the likely association of a radio-emitting tidal disruption event, AT2019dsg, with a second high-energy neutrino. AT2019dsg was identified as part of our systematic search for optical counterparts to high-energy neutrinos with the Zwicky Transient Facility. The probability of finding any coincident radio-emitting tidal disruption event by chance is 0.5%, while the probability of finding one as bright in bolometric energy flux as AT2019dsg is 0.2%. Our electromagnetic observations can be explained through a multizone model, with radio analysis revealing a central engine, embedded in a UV photosphere, that powers an extended synchrotron-emitting outflow. This provides an ideal site for petaelectronvolt neutrino production. Assuming that the association is genuine, our observations suggest that tidal disruption events with mildly relativistic outflows contribute to the cosmic neutrino flux.