Attention-gating for improved radio galaxy classification

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 501:3 (2021) 4579-4595

Authors:

Micah Bowles, Anna MM Scaife, Fiona Porter, Hongming Tang, David J Bastien

The Galactic center chimneys: The base of the multiphase outflow of the Milky Way

(2021)

Authors:

G Ponti, MR Morris, E Churazov, I Heywood, RP Fender

MID-Radio Telescope, single pixel feed packages for the square kilometre array: an overview

IEEE Journal of Microwaves Institute of Electrical and Electronics Engineers 1:1 (2021) 428-437

Authors:

Angela Taylor, Michael Jones, Jamie Leech, andre Hector, Lei Liu, Robert Watkins, A Pellegrini

Abstract:

The Square Kilometre Array (SKA) project is an international effort to build the world’s largest radio telescope, enabling science with unprecedented detail and survey speed. The project spans over a decade and is now at a mature stage, ready to enter the construction and integration phase. In the fully deployed state, the MID-Telescope consists of a 150-km diameter array of offset Gregorian antennas installed in the radio quiet zone of the Karoo desert (South Africa). Each antenna is equipped with three feed packages, that are precision positioned in the sub-reflector focus by a feed indexer platform. The total observational bandwidth (0.35-15.4GHz) is segmented into seven bands. Band 1 (0.35 – 1.05 GHz) and Band 2 (0.95 – 1.76 GHz) are implemented as individual feed packages. The remaining five bands (Bands 3, 4, 5a, 5b, and 6) are combined in a single feed package. Initially only Band 5a (4.6 – 8.5 GHz) and Band 5b (8.3 – 15.4 GHz) will be installed. This paper provides an overview of recent progress on design, test and integration of each feed package as well as project and science goals, timeline and path to construction.

MID-Radio Telescope, Single Pixel Feed Packages for the Square Kilometre Array: An Overview

IEEE Journal of Microwaves Institute of Electrical and Electronics Engineers (2021)

Authors:

Alice Pellegrini, Jonas Flygare, Isak P Theron, Robert Lehmensiek, Adriaan Peens-Hough, Jamie Leech, Michael E Jones, Angela C Taylor, Robert EJ Watkins, Lei Liu, Andre Hector, Biao Du, Yang Wu

Abstract:

The Square Kilometre Array (SKA) project is an international effort to build the world s largest radio telescope, enabling science with unprecedented detail and survey speed. The project spans over a decade and is now at a mature stage, ready to enter the construction and integration phase. In the fully deployed state, the MID-Telescope consists of a 150-km diameter array of offset Gregorian antennas installed in the radio quiet zone of the Karoo desert (South Africa). Each antenna is equipped with three feed packages, that are precision positioned in the sub-reflector focus by a feed indexer platform. The total observational bandwidth (0.35-15.4GHz) is segmented into seven bands. Band 1 (0.35-1.05GHz) and Band 2 (0.95-1.76GHz) are implemented as individual feed packages. The remaining five bands (Bands 3, 4, 5a, 5b, and 6) are combined in a single feed package. Initially only Band 5a (4.6-8.5GHz) and Band 5b (8.3-15.4GHz) will be installed. This paper provides an overview of recent progress on design, test and integration of each feed package as well as project and science goals, timeline and path to construction.

Cross-correlating radio continuum surveys and CMB lensing: constraining redshift distributions, galaxy bias and cosmology

Monthly Notices of the Royal Astronomical Society Oxford University Press 502:2021 (2021) 876-887

Authors:

David Alonso, Matthew Jarvis, Emilio Bellini

Abstract:

We measure the harmonic-space auto-power spectrum of the galaxy overdensity in the LOFAR Two-metre Sky Survey (LoTSS) First Data Release and its cross correlation with the map of the lensing convergence of the cosmic microwave background (CMB) from the Planck collaboration. We report a ∼5σ detection of the cross-correlation. We show that the combination of the clustering power spectrum and CMB lensing cross-correlation allows us to place constraints on the high-redshift tail of the redshift distribution, one of the largest sources of uncertainty in the use of continuum surveys for cosmology. Our analysis shows a preference for a broader redshift tail than that predicted by the photometric redshifts contained in the LoTSS value added catalog, as expected, and more compatible with predictions from simulations and spectroscopic data. Although the ability of CMB lensing to constrain the width and tail of the redshift distribution could also be valuable for the analysis of current and future photometric weak lensing surveys, we show that its performance relies strongly on the redshift evolution of the galaxy bias. Assuming the redshift distribution predicted by the Square Kilometre Array Design simulations, we use our measurements to place constraints on the linear bias of radio galaxies and the amplitude of matter inhomogeneities σ8, finding σ8=0.69+0.14−0.21 assuming the galaxy bias scales with the inverse of the linear growth factor, and σ8=0.79+0.17−0.32 assuming a constant bias.