Using sparse Gaussian processes for predicting robust inertial confinement fusion implosion yields
IEEE Transactions on Plasma Science IEEE (2019) 1-6
Discovery of a radio transient in M81
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 489:1 (2019) 1181-1196
The 2018 outburst of BHXB H1743−322 as seen with MeerKAT
Monthly Notices of the Royal Astronomical Society Oxford University Press 491:1 (2019) L28-L33
Abstract:
In recent years, the black hole candidate X-ray binary system H1743-322 has undergone outbursts and it has been observed with X-ray and radio telescopes. We present 1.3 GHz MeerKAT radio data from the ThunderKAT Large Survey Project on radio transients for the 2018 outburst of H1743-322. We obtain seven detections from a weekly monitoring programme and use publicly available Swift X-ray Telescope and MAXI data to investigate the radio/X-ray correlation of H1743-322 for this outburst. We compare the 2018 outburst with those reported in the literature for this system and find that the X-ray outburst reported is similar to previously reported 'hard-only' outbursts. As in previous outbursts, H1743-322 follows the 'radio-quiet' correlation in the radio/X-ray plane for black hole X-ray binaries, and the radio spectral index throughout the outburst is consistent with the 'radio-quiet' population.The C-Band All-Sky Survey (C-BASS): Simulated parametric fitting in single pixels in total intensity and polarization
Monthly Notices of the Royal Astronomical Society Oxford University Press 490:2 (2019) 2958-2975
Abstract:
The cosmic microwave background (CMB) B-mode signal is potentially weaker than the diffuse Galactic foregrounds over most of the sky at any frequency. A common method of separating the CMB from these foregrounds is via pixel-based parametric-model fitting. There are not currently enough all-sky maps to fit anything more than the most simple models of the sky. By simulating the emission in seven representative pixels, we demonstrate that the inclusion of a 5 GHz data point allows for more complex models of low-frequency foregrounds to be fitted than at present. It is shown that the inclusion of the C-BASS data will significantly reduce the uncertainties in a number of key parameters in the modelling of both the galactic foregrounds and the CMB. The extra data allow estimates of the synchrotron spectral index to be constrained much more strongly than is presently possible, with corresponding improvements in the accuracy of the recovery of the CMB amplitude. However, we show that to place good limits on models of the synchrotron spectral curvature will require additional low-frequency data.Disk-Jet Coupling in the 2017/2018 Outburst of the Galactic Black Hole Candidate X-Ray Binary MAXI J1535-571
Astrophysical Journal American Astronomical Society 883:2 (2019) 198