Gain stabilization for radio intensity mapping using a continuous-wave reference signal

Monthly Notices of the Royal Astronomical Society Oxford University Press 489:1 (2019) 548-554

Authors:

Alexander Pollak, CM Holler, ME Jones, AC Taylor

Abstract:

Stabilizing the gain of a radio astronomy receiver is of great importance for sensitive radio intensity mapping. In this paper we discuss a stabilization method using a continuous-wave reference signal injected into the signal chain and tracked in a single channel of the spectrometer to correct for the gain variations of the receiver. This method depends on the fact that gain fluctuations of the receiver are strongly correlated across the frequency band, which we can show is the case for our experimental set-up. This method is especially suited for receivers with a digital back-end with high spectral resolution and moderate dynamic range. The sensitivity of the receiver is unaltered except for one lost frequency channel. We present experimental results using a new 4–8.5 GHz receiver with a digital back-end that shows substantial reduction of the 1/f noise and the 1/f knee frequency.

Deviations from normal distributions in artificial and real time series: a false positive prescription

(2019)

Authors:

Paul J Morris, Nachiketa Chakraborty, Garret Cotter

Understanding the radio beam of PSR J1136+1551 through its single pulses

Monthly Notices of the Royal Astronomical Society Oxford University Press 489:1 (2019) 310-324

Authors:

Lucy Oswald, A Karastergiou, S Johnston

Abstract:

The frequency widening of pulsar profiles is commonly attributed to lower frequencies being produced at greater heights above the surface of the pulsar; so-called radius-to-frequency mapping (RFM). The observer’s view of pulsar emission is a 1D cut through a 3D magnetosphere: we can only see that emission which points along our line of sight. However, by comparing the frequency evolution of many single pulses positioned at different phases, we can build up an understanding of the shape of the active emission region. We use single pulses observed with the Giant Metrewave Radio Telescope to investigate the emission region of PSR J1136+1551 and test RFM. Assuming that emission is produced tangential to the magnetic field lines and that each emission frequency corresponds to a single height, we simulate the single pulse profile evolution resulting from the canonical conal beam model and a fan beam model. Comparing the results of these simulations with the observations, we conclude that the emission region of PSR J1136+1551 is better described by the fan beam model. The diversity of profile widening behaviour observed for the single pulses can be explained by orthogonally polarized modes propagating along differing frequency-dependent paths in the magnetosphere.

Prospects for the Use of Photosensor Timing Information with Machine Learning Techniques in Background Rejection.

Sissa Medialab Srl (2019) 798

Authors:

Samuel Timothy Spencer, Thomas Armstrong, Jason John Watson, Garret Cotter

ASKAP commissioning observations of the GAMA 23 field

Publications of the Astronomical Society of Australia Cambridge University Press 36 (2019) e024

Authors:

Denis A Leahy, AM Hopkins, RP Norris, J Marvil, JD Collier, EN Taylor, JR Allison, C Anderson, M Bell, M Bilicki, J Bland-Hawthorn, S Brough, MJI Brown, S Driyer, G Gurkan, L Haryey-Smith, I Heywood, BW Holwerda, J Liske, AR Lopez-Sanchez, D McConnell, A Moffett, MS Owers, KA Pimbblet, W Raja, N Seymour, MA Voronkov, L Wang

Abstract:

We have observed the G23 field of the Galaxy AndMass Assembly (GAMA) survey using the Australian Square Kilometre Array Pathfinder (ASKAP) in its commissioning phase to validate the performance of the telescope and to characterise the detected galaxy populations. This observation covers ∼48 deg2 with synthesised beam of 32.7 arcsec by 17.8 arcsec at 936MHz, and ∼39 deg2 with synthesised beam of 15.8 arcsec by 12.0 arcsec at 1320MHz. At both frequencies, the root-mean-square (r.m.s.) noise is ∼0.1 mJy/beam. We combine these radio observations with the GAMA galaxy data, which includes spectroscopy of galaxies that are i-band selected with a magnitude limit of 19.2. Wide-field Infrared Survey Explorer (WISE) infrared (IR) photometry is used to determine which galaxies host an active galactic nucleus (AGN). In properties including source counts, mass distributions, and IR versus radio luminosity relation, the ASKAP-detected radio sources behave as expected. Radio galaxies have higher stellar mass and luminosity in IR, optical, and UV than other galaxies. We apply optical and IR AGN diagnostics and find that they disagree for ∼30% of the galaxies in our sample. We suggest possible causes for the disagreement. Some cases can be explained by optical extinction of the AGN, but for more than half of the cases we do not find a clear explanation. Radio sources aremore likely (∼6%) to have an AGN than radio quiet galaxies (∼1%), but the majority of AGN are not detected in radio at this sensitivity.