The LOFAR Two-metre Sky Survey: Deep Fields Data Release 2

Astronomy & Astrophysics EDP Sciences 695 (2025) a80

Authors:

TW Shimwell, CL Hale, PN Best, A Botteon, A Drabent, MJ Hardcastle, V Jelić, JMGHJ de Jong, R Kondapally, HJA Röttgering, C Tasse, RJ van Weeren, WL Williams, A Bonafede, M Bondi, M Brüggen, G Brunetti, JR Callingham, F De Gasperin, KJ Duncan, C Horellou, S Iyer, I de Ruiter, K Małek, DG Nair, LK Morabito, I Prandoni, A Rowlinson, J Sabater, A Shulevski, DJB Smith, F Sweijen

The jet paths of radio active galactic nuclei and their cluster weather

Astronomy & Astrophysics EDP Sciences 695 (2025) a178

Authors:

E Vardoulaki, V Backöfer, A Finoguenov, F Vazza, J Comparat, G Gozaliasl, IH Whittam, CL Hale, JR Weaver, AM Koekemoer, JD Collier, B Frank, I Heywood, S Sekhar, AR Taylor, S Pinjarkar, MJ Hardcastle, T Shimwell, M Hoeft, SV White, F An, F Tabatabaei, Z Randriamanakoto, MD Filipovic

Multiwavelength analysis of AT 2023sva: a luminous orphan afterglow with evidence for a structured jet

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 538:1 (2025) 351-372

Authors:

Gokul P Srinivasaragavan, Daniel A Perley, Anna YQ Ho, Brendan O’Connor, Antonio de Ugarte Postigo, Nikhil Sarin, S Bradley Cenko, Jesper Sollerman, Lauren Rhodes, David A Green, Dmitry S Svinkin, Varun Bhalerao, Gaurav Waratkar, AJ Nayana, Poonam Chandra, M Coleman Miller, Daniele B Malesani, Geoffrey Ryan, Suryansh Srijan, Eric C Bellm, Eric Burns, David J Titterington, Maria B Stone, Josiah Purdum, Tomás Ahumada, GC Anupama, Sudhanshu Barway, Michael W Coughlin, Andrew Drake, Rob Fender, José F Agüí Fernández, Dmitry D Frederiks, Stefan Geier, Matthew J Graham, Mansi M Kasliwal, SR Kulkarni, Harsh Kumar, Maggie L Li, Russ R Laher, Alexandra L Lysenko, Gopal Parwani, Richard A Perley, Anna V Ridnaia, Anirudh Salgundi, Roger Smith, Niharika Sravan, Vishwajeet Swain, Christina C Thöne, Anastasia E Tsvetkova, Mikhail V Ulanov, Jada Vail, Jacob L Wise, Avery Wold

Finding radio transients with anomaly detection and active learning based on volunteer classifications

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 538:3 (2025) staf336

Authors:

Alex Andersson, Chris Lintott, Rob Fender, Michelle Lochner, Patrick Woudt, Jakob van den Eijnden, Alexander van der Horst, Assaf Horesh, Payaswini Saikia, Gregory R Sivakoff, Lilia Tremou, Mattia Vaccari

Abstract:

<jats:title>ABSTRACT</jats:title> <jats:p>In this work, we explore the applicability of unsupervised machine learning algorithms to finding radio transients. Facilities such as the Square Kilometre Array (SKA) will provide huge volumes of data in which to detect rare transients; the challenge for astronomers is how to find them. We demonstrate the effectiveness of anomaly detection algorithms using 1.3 GHz light curves from the SKA precursor MeerKAT. We make use of three sets of descriptive parameters (‘feature sets’) as applied to two anomaly detection techniques in the astronomaly package and analyse our performance by comparison with citizen science labels on the same data set. Using transients found by volunteers as our ground truth, we demonstrate that anomaly detection techniques can recall over half of the radio transients in the 10 per cent of the data with the highest anomaly scores. We find that the choice of anomaly detection algorithm makes a minor difference, but that feature set choice is crucial, especially when considering available resources for human inspection and/or follow-up. Active learning, where human labels are given for just 2 per cent of the data, improves recall by up to 20 percentage points, depending on the combination of features and model used. The best-performing results produce a factor of 5 times fewer sources requiring vetting by experts. This is the first effort to apply anomaly detection techniques to finding radio transients and shows great promise for application to other data sets, and as a real-time transient detection system for upcoming large surveys.</jats:p>

The Radio Counterpart to the Fast X-Ray Transient EP240414a

The Astrophysical Journal American Astronomical Society 981:1 (2025) 48

Authors:

Joe S Bright, Francesco Carotenuto, Rob Fender, Carmen Choza, Andrew Mummery, Peter G Jonker, Stephen J Smartt, David R DeBoer, Wael Farah, James Matthews, Alexander W Pollak, Lauren Rhodes, Andrew Siemion

Abstract:

Despite being operational for only a short time, the Einstein Probe mission, with its large field of view and rapid localization capabilities, has already significantly advanced the study of rapid variability in the soft X-ray sky. We report the discovery of luminous and variable radio emission from the Einstein Probe fast X-ray transient EP240414a, the second such source with a radio counterpart. The radio emission at 3 GHz peaks at ∼30 days postexplosion and with a spectral luminosity ∼2 × 1030 erg s−1 Hz−1, similar to what is seen from long gamma-ray bursts, and distinct from other extragalactic transients including supernovae and tidal disruption events, although we cannot completely rule out emission from engine driven stellar explosions, e.g., the fast blue optical transients. An equipartition analysis of our radio data reveals that an outflow with at least a moderate bulk Lorentz factor (Γ ≳ 1.6) with a minimum energy of ∼1048 erg is required to explain our observations. The apparent lack of a reported gamma-ray counterpart to EP240414a could suggest that an off-axis or choked jet could be responsible for the radio emission, although a low-luminosity gamma-ray burst may have gone undetected. Our observations are consistent with the hypothesis that a significant fraction of extragalactic fast X-ray transients are associated with the deaths of massive stars.