New Constraints on the Evolution of the M H i − M ⋆ Scaling Relation Combining CHILES and MIGHTEE-H i Data
The Astrophysical Journal American Astronomical Society 982:2 (2025) 82
Abstract:
The improved sensitivity of interferometric facilities to the 21 cm line of atomic hydrogen (H i) enables studies of its properties in galaxies beyond the local Universe. In this work, we perform a 21 cm line spectral stacking analysis combining the MeerKAT International GigaHertz Tiered Extragalactic Exploration and COSMOS H i Large Extra-galactic Survey surveys in the COSMOS field to derive a robust H i–stellar mass relation at z ≈ 0.36. In particular, by stacking thousands of star-forming galaxies subdivided into stellar mass bins, we optimize the signal-to-noise ratio of targets and derive mean H i masses in the different stellar mass intervals for the investigated galaxy population. We combine spectra from the two surveys, estimate H i masses, and derive the scaling relation log10MHI=(0.32±0.04)log10M⋆+(6.65±0.36) . Our findings indicate that galaxies at z ≈ 0.36 are H i richer than those at z ≈ 0 but H i poorer than those at z ≈ 1, with a slope consistent across redshift, suggesting that stellar mass does not significantly affect H i exchange mechanisms. We also observe a slower growth rate H i relative to the molecular gas, supporting the idea that the accretion of cold gas is slower than the rate of consumption of molecular gas to form stars. This study contributes to understanding the role of atomic gas in galaxy evolution and sets the stage for future development of the field in the upcoming Square Kilometre Array era.The middle-aged pulsar PSR J1741-2054 and its bow-shock nebula in the far-ultraviolet
Astronomy & Astrophysics EDP Sciences (2025)
Contemporaneous optical-radio observations of a fast radio burst in a close galaxy pair
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 538:3 (2025) 1800-1815
The Long-lived Broadband Afterglow of Short Gamma-Ray Burst 231117A and the Growing Radio-detected Short Gamma-Ray Burst Population
The Astrophysical Journal American Astronomical Society 982:1 (2025) 42
Abstract:
We present multiwavelength observations of the Swift short γ-ray burst GRB 231117A, localized to an underlying galaxy at redshift z = 0.257 at a small projected offset (∼2 kpc). We uncover long-lived X-ray Chandra X-ray Observatory and radio/millimeter (VLA, MeerKAT, and ALMA) afterglow emission, detected to ∼37 days and ∼20 days (rest frame), respectively. We measure a wide jet (∼10 .° 4) and relatively high circumburst density (∼0.07 cm−3) compared to the short GRB population. Our data cannot be easily fit with a standard forward shock model, but they are generally well fit with the incorporation of a refreshed forward shock and a reverse shock at <1 day. We incorporate GRB 231117A into a larger sample of 132 X-ray detected events, 71 of which were radio-observed (17 cm-band detections), for a systematic study of the distributions of redshifts, jet and afterglow properties, galactocentric offsets, and local environments of events with and without detected radio afterglows. Compared to the entire short GRB population, the majority of radio-detected GRBs are at relatively low redshifts (z < 0.6) and have high circumburst densities (>10−2 cm−3), consistent with their smaller (<8 kpc) projected galactocentric offsets. We additionally find that 70% of short GRBs with opening angle measurements were radio-detected, indicating the importance of radio afterglows in jet measurements, especially in the cases of wide (>10°) jets where observational evidence of collimation may only be detectable at radio wavelengths. Owing to improved observing strategies and the emergence of sensitive radio facilities, the number of radio-detected short GRBs has quadrupled in the past decade.The ubiquity of variable radio emission and spin-down rates in pulsars
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf427