Spectroscopy of The Largest Ever Gamma-ray Selected BL Lac Sample
(2013)
A Circularly Symmetric Antenna Design With High Polarization Purity and Low Spillover
IEEE Transactions on Antennas and Propagation (2013)
A circularly symmetric antenna design with high polarization purity and low spillover
IEEE Transactions on Antennas and Propagation 61:1 (2013) 117-124
Abstract:
We describe the development of two circularly symmetric antennas with high polarization purity and low spill-over. Both were designed to be used in an all-sky polarization and intensity survey at 5 GHz (the C-Band All-Sky Survey, C-BASS). The survey requirements call for very low cross-polar signal levels and far-out sidelobes. Two different existing antennas, with 6.1-m and 7.6-m diameter primaries, were adapted by replacing the feed and secondary optics, resulting in identical beam performances of 0.73\circ FWHM, cross-polarization better than - 50 dB, and far-out sidelobes below -70 dB. The polarization purity was realized by using a symmetric low-loss dielectric foam support structure for the secondary mirror, avoiding the need for secondary support struts. Ground spill-over was largely reduced by using absorbing baffles around the primary and secondary mirrors, and by the use of a low-sidelobe profiled corrugated feedhorn. The 6.1-m antenna and receiver have been completed and tested. Results show that the co-polar beam matches the design simulations very closely in the main beam and down to levels of - 80 dB in the backlobes. With the absorbing baffles in place the far-out (>100{\circ}) sidelobe response is reduced below -90 dB. Cross-polar response could only be measured down to a noise floor of - 20 dB but is also consistent with the design simulations. Temperature loading and groundspill due to the secondary support were measured at less than 1 K. © 1963-2012 IEEE.A compact high energy camera for the cherenkov telescope array
Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013 2013-October (2013)
Abstract:
The Compact High Energy Camera (CHEC) is a camera-development project involving UK, US, Japanese and Dutch institutes for the dual-mirror Small-Sized Telescopes (SST-2M) of the Cherenkov Telescope Array (CTA). Two CHEC prototypes, based on different photosensors are funded and will be assembled and tested in the UK over the next ≈18 months. CHEC is designed to record flashes of Cherenkov light lasting from a few to a hundred nanoseconds, with typical RMS image width and length of ∼ 0.2◦ × 1.0◦, and has a 9◦ field of view. The physical camera geometry is dictated by the telescope optics: a curved focal surface with radius of curvature 1 m and diameter ∼35 cm is required. CHEC is designed to work with both the ASTRI and GATE SST-2M telescope structures and will include an internal LED flasher system for calibration. The first CHEC prototype will be based on multi-anode photomultipliers (MAPMs) and the second on silicon photomultipliers (SiPMs or MPPCs). The first prototype will soon be installed on the ASTRI SST-2M prototype structure on Mt. Etna.Broad-band monitoring tracing the evolution of the jet and disc in the black hole candidate X-ray binary MAXI J1659-152
Monthly Notices of the Royal Astronomical Society 436:3 (2013) 2625-2638