The cosmic evolution of Fermi BL Lacertae objects
Astrophysical Journal 780:1 (2014)
Abstract:
Fermi has provided the largest sample of γ-ray-selected blazars to date. In this work we use a uniformly selected set of 211 BL Lacertae (BL Lac) objects detected by Fermi during its first year of operation. We obtained redshift constraints for 206 out of the 211 BL Lac objects in our sample, making it the largest and most complete sample of BL Lac objects available in the literature. We use this sample to determine the luminosity function of BL Lac objects and its evolution with cosmic time. We find that for most BL Lac classes the evolution is positive, with a space density peaking at modest redshift (z ≈ 1.2). Low-luminosity, high-synchrotron-peaked (HSP) BL Lac objects are an exception, showing strong negative evolution, with number density increasing for z ≲ 0.5. Since this rise corresponds to a drop-off in the density of flat-spectrum radio quasars (FSRQs), a possible interpretation is that these HSPs represent an accretion-starved end state of an earlier merger-driven gas-rich phase. We additionally find that the known BL Lac correlation between luminosity and photon spectral index persists after correction for the substantial observational selection effects with implications for the so-called "blazar sequence." Finally, by estimating the beaming corrections to the luminosity function, we find that BL Lac objects have an average Lorentz factor of , and that most are seen within 10° of the jet axis. © 2014. The American Astronomical Society. All rights reserved.The evolving polarized jet of black hole candidate swift J1745-26
Monthly Notices of the Royal Astronomical Society 437:4 (2014) 3265-3273
Abstract:
Swift J1745-26 is an X-ray binary towards the Galactic Centre that was detected when it went into outburst in 2012 September. This source is thought to be one of a growing number of sources that display 'failed outbursts', in which the self-absorbed radio jets of the transient source are never fully quenched and the thermal emission from the geometrically thin inner accretion disc never fully dominates the X-ray flux. We present multifrequency data from the Very Large Array, Australia Telescope Compact Array and Karoo Array Telescope (KAT- 7) radio arrays, spanning the entire period of the outburst. Our rich data set exposes radio emission that displays a high level of large-scale variability compared to the X-ray emission and deviations from the standard radio-X-ray correlation that are indicative of an unstable jet and confirm the outburst's transition from the canonical hard state to an intermediate state. We also observe steepening of the spectral index and an increase of the linear polarization to a large fraction (50 per cent) of the total flux, as well as a rotation of the electric vector position angle. These are consistent with a transformation from a self-absorbed compact jet to optically thin ejecta - the first time such a discrete ejection has been observed in a failed outburst - and may imply a complex magnetic field geometry. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.Transient astrophysics with the square kilometre array
Proceedings of Science 9-13-June-2014 (2014)
Abstract:
This chapter provides an overview of the possibilities for transient and variable-source astrophysics with the Square Kilometre Array. While subsequent chapters focus on the astrophysics of individual events, we focus on the broader picture, and how to maximise the science coming from the telescope. The SKA as currently designed will be a fantastic and ground-breaking facility for radio transient studies, but the scientifc yield will be dramatically increased by the addition of (i) near-real-time commensal searches of data streams for events, and (ii) on occasion, rapid robotic response to Target-of-Opprtunity style triggers.Unravelling lifecycles & physics of radio-loud AGN in the SKA era
Proceedings of Science 9-13-June-2014 (2014)
Abstract:
Radio-loud AGN (> 1022 W Hz-1 at 1.4 GHz) will be the dominant bright source population detected with the SKA. The high resolution that the SKA will provide even in wide-area surveys will mean that, for the first time sensitive, multi-frequency total intensity and polarisation imaging of large samples of radio-loud active galactic nuclei (AGN) will become available. The unprecedented sensitivity of the SKA coupled with its wide field of view capabilities will allow identification of objects of the same morphological type (i.e. the entire FR I, low- and high luminosity FR II, disturbed morphology as well as weak radio-emitting AGN populations) up to high redshifts (z ∼ 4 and beyond), and at the same stage of their lives, from the youngest CSS/GPS sources to giant and fading (dying) sources, through to those with restarted activity radio galaxies and quasars. Critically, the wide frequency coverage of the SKA will permit analysis of same-epoch rest-frame radio properties, and the sensitivity and resolution will allow full cross- identification with multi-waveband data, further revealing insights into the physical processes driving the evolution of these radio sources. In this chapter of the SKA Science Book we give a summary of the main science drivers in the studies of lifecycles and detailed physics of radio-loud AGN, which include radio and kinetic luminosity functions, AGN feedback, radio-AGN triggering, radio-loud AGN unification and cosmological studies. We discuss the best parameters for the proposed SKA continuum surveys, both all-sky and deep field, in the light of these studies.Weak gravitational lensing with the Square Kilometre Array
Proceedings of Science 9-13-June-2014 (2014)