Powerful jets from accreting black holes: Evidence from the optical and infrared

Chapter in Black Holes and Galaxy Formation, (2010) 295-320

Authors:

DM Russell, RP Fender

Abstract:

A common consequence of accretion onto black holes is the formation of powerful, relativistic jets that escape the system. In the case of supermassive black holes at the centres of galaxies this has been known for decades, but for stellar-mass black holes residing within galaxies like our own, it has taken recent advances to arrive at this conclusion. Here, a review is given of the evidence that supports the existence of jets from accreting stellar-mass black holes, from observations made at optical and infrared wavelengths. In particular it is found that on occasion, jets can dominate the emission of these systems at these wavelengths. In addition, the interactions between the jets and the surrounding matter produce optical and infrared emission on large scales via thermal and non-thermal processes. The evidence, implications and applications in the context of jet physics are discussed. It is shown that many properties of the jets can be constrained from these studies, including the total kinetic power they contain. The main conclusion is that like the supermassive black holes, the jet kinetic power of accreting stellar-mass black holes is sometimes comparable to their bolometric radiative luminosity. Future studies can test ubiquities in jet properties between objects, and attempt to unify the properties of jets from all observable accreting black holes, i.e. of all masses.

Probing the behaviour of the X-ray binary Cygnus X-3 with very long baseline radio interferometry

Monthly Notices of the Royal Astronomical Society 401:2 (2010) 890-900

Authors:

V Tudose, JCA Miller-Jones, RP Fender, Z Paragi, C Sakari, A Szostek, MA Garrett, V Dhawan, A Rushton, RE Spencer, M Van Der Klis

Abstract:

In order to test the recently proposed classification of the radio/X-ray states of the X-ray binary Cygnus X-3 (Cyg X-3), we present an analysis of the radio data available for the system at much higher spatial resolutions than used for defining the states. The radio data set consists of archival Very Long Baseline Array data at 5 or 15 GHz and new electronic European Very Long Baseline Interferometry Network data at 5 GHz. We also present 5-GHz Multi-Element Radio Linked Interferometer Network observations of an outburst of Cyg X-3. In the X-ray regime, we use quasi-simultaneous with radio, monitoring and pointed Rossi X-ray Timing Explorer observations. We find that when the radio emission from both jet and core is globally considered, the behaviour of Cyg X-3 at mas scales is consistent with that described at arcsec-scales. However, when the radio emission is disentangled in a core component and a jet component, the situation changes. It becomes clear that in active states the radio emission from the jet is dominating that from the core. This shows that in these states the overall radio flux cannot be used as a direct tracer of the accretion state. © 2009 RAS.

Probing ∼L Lyman-break galaxies at z≈ 7 in GOODS-South with WFC3 on Hubble Space Telescope

Monthly Notices of the Royal Astronomical Society 403:2 (2010) 938-944

Authors:

SM Wilkins, AJ Bunker, RS Ellis, D Stark, ER Stanway, K Chiu, S Lorenzoni, MJ Jarvis

Abstract:

We analyse recently acquired near-infrared Hubble Space Telescope imaging of the Great Observatories Origins Deep Survey (GOODS)-South field to search for star-forming galaxies at z≈ 7.0. By comparing Wide Field Camera 3 (WFC3) 0.98 μm Y-band images with Advanced Camera for Surveys (ACS)z-band (0.85 μm) images, we identify objects with colours consistent with Lyman-break galaxies at z≃ 6.4-7.4. This new data cover an area five times larger than that previously reported in the WFC3 imaging of the Hubble Ultra Deep Field and affords a valuable constraint on the bright end of the luminosity function. Using additional imaging of the region in the ACS B,V and i bands from GOODS v2.0 and the WFC. 3J band, we attempt to remove any low-redshift interlopers. Our selection criteria yields six candidates brighter than YAB= 27.0, of which all except one are detected in the ACS z-band imaging and are thus unlikely to be transients. Assuming all six candidates are atz≈ 7, this implies a surface density of objects brighter than YAB= 27.0 of 0.30 ± 0.12 arcmin-2, a value significantly smaller than the prediction from z≈ 6 luminosity function. This suggests continued evolution of the bright end of the luminosity function betweenz= 6 and 7, with number densities lower at higher redshift. © 2010 The Authors. Journal compilation © 2010 RAS.

The JCMT Nearby Galaxies Legacy Survey - III. Comparisons of cold dust, polycyclic aromatic hydrocarbons, molecular gas and atomic gas in NGC 2403

Monthly Notices of the Royal Astronomical Society 402:3 (2010) 1409-1425

Authors:

GJ Bendo, CD Wilson, BE Warren, E Brinks, HM Butner, P Chanial, DL Clements, S Courteau, J Irwin, FP Israel, JH Knapen, J Leech, HE Matthews, S Mühle, G Petitpas, S Serjeant, BK Tan, RPJ Tilanus, A Usero, M Vaccari, P van der Werf, C Vlahakis, T Wiegert, M Zhu

Abstract:

We used Spitzer Space Telescope 3.6, 8.0, 70 and 160 μm data, James Clerk Maxwell Telescope HARP-B CO J = (3-2) data, National Radio Astronomy Observatory 12 m telescope CO J= (1-0) data and Very Large Array H i data to investigate the relations among polycyclic aromatic hydrocarbons (PAHs), cold (∼20 K) dust, molecular gas and atomic gas within NGC 2403, an SABcd galaxy at a distance of 3.13 Mpc. The dust surface density is mainly a function of the total (atomic and molecular) gas surface density and galactocentric radius. The gas-to-dust ratio monotonically increases with radius, arying from ∼100 in the nucleus to ∼400 at 5.5 kpc. The slope of the gas-to-dust ratio is close to that of the oxygen abundance, suggesting that metallicity strongly affects the gas-to-dust ratio within this galaxy. The exponential scale length of the radial profile for the CO J = (3-2) emission is statistically identical to the scale length for the stellar continuum-subtracted 8 μm (PAH 8 μm) emission. However, CO J equals; (3-2) and PAH 8 μm surface brightnesses appear uncorrelated when examining sub-kpc-sized regions. © 2010 The Authors. Journal compilation © 2010 RAS.

The complete spectrum of the neutron star X-ray binary 4U 0614+091

Astrophysical Journal 710:1 (2010) 117-124

Authors:

S Migliari, JA Tomsick, JCA Miller-Jones, S Heinz, RI Hynes, RP Fender, E Gallo, PG Jonker, TJ MacCarone

Abstract:

We observed the neutron star (NS) ultra-compact X-ray binary 4U 0614+091 quasi-simultaneously in the radio band (Very Large Array), mid-infrared (IR)/IR (Spitzer/Multiband Imaging Photometer for Spitzer and Infrared Array Camera), near-IR/optical (Small and Moderate Aperture Research Telescope System), optical-UV (Swift/UV-Optical Telescope), soft and hard X-rays (Swift/X-ray Telescope and Rossi-X-ray Timing Explorer). The source was steadily in its "hard state." We detected the source in the whole range, for the first time in the radio band at 4.86 and 8.46GHz and in the mid-IR at 24 μm, up to 100 keV. The optically thick synchrotron spectrum of the jet is consistent with being flat from the radio to the mid-IR band. The flat jet spectrum breaks in the range ∼(1-4) × 1013Hz to an optically thin power-law synchrotron spectrum with spectral index ∼-0.5. These observations allow us to estimate a lower limit on the jet radiative power of 3 × 10 32 erg s-1 and a total jet power L J ∼ 1034μ-10.05 E 0.53c erg s-1 (where E c is the high-energy cutoff of the synchrotron spectrum in eV and μ0.05 is the radiative efficiency in units of 0.05). The contemporaneous detection of the optically thin part of the compact jet and the X-ray tail above 30keV allows us to assess the contribution of the jet to the hard X-ray tail by synchrotron self-Compton (SSC) processes. We conclude that, for realistic jet size, boosting, viewing angle, and energy partition, the SSC emission alone, from the post-shock, accelerated, non-thermal population in the jet, is not a viable mechanism to explain the observed hard X-ray tail of the NS 4U 0614+091. © 2010. The American Astronomical Society. All rights reserved.