A CO(3-2) survey of a merging sequence of luminous infrared galaxies
Monthly Notices of the Royal Astronomical Society 406:2 (2010) 1364-1378
Abstract:
Luminous infrared galaxies (LIR > 1011 L⊙) are often associated with interacting galactic systems and are thought to be powered by merger-induced starbursts and/or dust-enshrouded active galactic nucleus. In such systems, the evolution of the dense, star-forming molecular gas as a function of merger separation is of particular interest. Here, we present observations of the CO(3-2) emission from a sample of luminous infrared galaxy mergers that span a range of galaxy-galaxy separations. The excitation of the molecular gas is studied by examining the CO(3-2)/CO(1-0) line ratio, r31, as a function of merger extent. We find these line ratios, r31, to be consistent with kinetic temperatures of Tk = (30-50) K and gas densities of We also find weak correlations between r31 and both merger progression and star formation efficiency [LFIR/LCO(1-0)]. These correlations show a tendency for gas excitation to increase as the merger progresses and the star formation efficiency rises. To conclude, we calculate the contributions of the CO(3-2) line to the 850-μm fluxes measured with SCUBA (Submillimetre Common-User Bolometer Array), which are seen to be significant (∼22 per cent). © 2010 The Authors. Journal compilation © 2010 RAS.A 33-GHz Very Small Array survey of the Galactic plane from l = 27\deg to 46\deg
\mnras 406 (2010) 1629-1643
The Herschel-SPIRE Legacy Survey (HSLS): the scientific goals of a shallow and wide submillimeter imaging survey with SPIRE
ArXiv 1007.3519 (2010)
Abstract:
A large sub-mm survey with Herschel will enable many exciting science opportunities, especially in an era of wide-field optical and radio surveys and high resolution cosmic microwave background experiments. The Herschel-SPIRE Legacy Survey (HSLS), will lead to imaging data over 4000 sq. degrees at 250, 350, and 500 micron. Major Goals of HSLS are: (a) produce a catalog of 2.5 to 3 million galaxies down to 26, 27 and 33 mJy (50% completeness; 5 sigma confusion noise) at 250, 350 and 500 micron, respectively, in the southern hemisphere (3000 sq. degrees) and in an equatorial strip (1000 sq. degrees), areas which have extensive multi-wavelength coverage and are easily accessible from ALMA. Two thirds of the of the sources are expected to be at z > 1, one third at z > 2 and about a 1000 at z > 5. (b) Remove point source confusion in secondary anisotropy studies with Planck and ground-based CMB data. (c) Find at least 1200 strongly lensed bright sub-mm sources leading to a 2% test of general relativity. (d) Identify 200 proto-cluster regions at z of 2 and perform an unbiased study of the environmental dependence of star formation. (e) Perform an unbiased survey for star formation and dust at high Galactic latitude and make a census of debris disks and dust around AGB stars and white dwarfs.A search for debris disks in the Herschel-ATLAS
Astronomy and Astrophysics 518:3 (2010)
Abstract:
Aims. We aim to demonstrate that the Herschel-ATLAS (H-ATLAS) is suitable for a blind and unbiased survey for debris disks by identifying candidate debris disks associated with main sequence stars in the initial science demonstration field of the survey. We show that H-ATLAS reveals a population of far-infrared/sub-mm sources that are associated with stars or star-like objects on the SDSS main-sequence locus. We validate our approach by comparing the properties of the most likely candidate disks to those of the known population. Methods. We use a photometric selection technique to identify main sequence stars in the SDSS DR7 catalogue and a Bayesian Likelihood Ratio method to identify H-ATLAS catalogue sources associated with these main sequence stars. Following this photometric selection we apply distance cuts to identify the most likely candidate debris disks and rule out the presence of contaminating galaxies using UKIDSS LAS K-band images. Results. We identify 78 H-ATLAS sources associated with SDSS point sources on the main-sequence locus, of which two are the most likely debris disk candidates: H-ATLAS J090315.8 and H-ATLAS J090240.2. We show that they are plausible candidates by comparing their properties to the known population of debris disks. Our initial results indicate that bright debris disks are rare, with only 2 candidates identified in a search sample of 851 stars. We also show that H-ATLAS can derive useful upper limits for debris disks associated with Hipparcos stars in the field and outline the future prospects for our debris disk search programme. © 2010 ESO.Herschel-ATLAS: Blazars in the science demonstration phase field
Astronomy and Astrophysics 518:3 (2010)