A digital broadband beamforming architecture for 2-PAD
Proceedings of Science 132 (2009) 273-277
Abstract:
The development of densely-packed, all-digital aperture arrays is an important area of research required for the Square Kilometre Array (SKA) radio telescope. The design of real-time signal processing systems for digital aperture arrays is currently a central challenge in pathfinder projects worldwide. We describe an hierarchical, frequency-domain beamforming architecture for synthesising a sky beam from the wideband antenna feeds of digital aperture arrays. In particular this work describes a specific implementation of the beamforming architecture to the 2-Polarisation All-Digital (2-PAD) aperture array demonstrator.A heuristic prediction of the cosmic evolution of the co-luminosity functions
Astrophysical Journal 702:2 (2009) 1321-1335
Abstract:
We predict the emission line luminosity functions (LFs) of the first 10 rotational transitions of 12C16O in galaxies at redshift z = 0 to z = 10. This prediction relies on a recently presented simulation of the molecular cold gas content in 3 × 107 evolving galaxies based on the Millennium Simulation. We combine this simulation with a model for the conversion between molecular mass and CO-line intensities, which incorporates the following mechanisms: (1) molecular gas is heated by the cosmic microwave background (CMB), starbursts (SBs), and active galactic nuclei (AGNs); (2) molecular clouds in dense or inclined galaxies can overlap; (3) compact gas can attain a smooth distribution in the densest part of disks; (4) CO luminosities scale with metallicity changes between galaxies; and (5) CO luminosities are always detected against the CMB. We analyze the relative importance of these effects and predict the cosmic evolution of the CO-LFs. The most notable conclusion is that the detection of regular galaxies (i.e., no AGN, no massive SB) at high z ≳ 7 in CO emission will be dramatically hindered by the weak contrast against the CMB, in contradiction to earlier claims that CMB heating will ease the detection of high-redshift CO. The full simulation of extragalactic CO lines and the predicted CO-LFs at any redshift can be accessed online (http://s-cubed.physics.ox.ac.uk/, go to "S3-SAX") and they should be useful for the modeling of CO-line surveys with future telescopes, such as the Atacama Large Millimeter/submillimeter Array or the Square Kilometre Array. © 2009 The American Astronomical Society. All rights reserved.A virtual sky with extragalactic h I and co lines for the square kilometre array and the atacama large millimeter/submillimeter array
Astrophysical Journal 703:2 (2009) 1890-1903
Abstract:
We present a sky simulation of the atomic H I-emission line and the first 10 12C16O rotational emission lines of molecular gas in galaxies beyond the Milky Way. The simulated sky field has a comoving diameter of 500 h -1 Mpc; hence, the actual field of view depends on the (user-defined) maximal redshift z max; e.g., for z max = 10, the field of view yields 4 × 4 deg2. For all galaxies, we estimate the line fluxes, line profiles, and angular sizes of the H I and CO-emission lines. The galaxy sample is complete for galaxies with cold hydrogen masses above 108 M. This sky simulation builds on a semi-analytic model of the cosmic evolution of galaxies in a Λ cold dark matter (ΛCDM) cosmology. The evolving CDM distribution was adopted from the Millennium Simulation, an N-body CDM simulation in a cubic box with a side length of 500 h -1 Mpc. This side length limits the coherence scale of our sky simulation: it is long enough to allow the extraction of the baryon acoustic oscillations in the galaxy power spectrum, yet the position and amplitude of the first acoustic peak will be imperfectly defined. This sky simulation is a tangible aid to the design and operation of future telescopes, such as the Square Kilometre Array, Large Millimeter Telescope, and Atacama Large Millimeter/Submillimeter Array. The results presented in this paper have been restricted to a graphical representation of the simulated sky and fundamental dN/dz analyses for peak flux density limited and total flux limited surveys of H I and CO. A key prediction is that H I will be harder to detect at redshifts z ≳ 2 than predicted by a no-evolution model. The future verification or falsification of this prediction will allow us to qualify the semi-analytic models. © 2009. The American Astronomical Society. All rights reserved.AMI observations of northern supernova remnants at 14-18 GHz
Monthly Notices of the Royal Astronomical Society 396:1 (2009) 365-376
Abstract:
We present observations between 14.2 and 17.9 GHz of 12 reported supernova remnants (SNRs) made with the Arcminute Microkelvin Imager Small Array (AMI SA). In conjunction with data from the literature at lower radio frequencies, we determine spectra of these objects. For well-studied SNRs (Cas A, Tycho's SNR, 3C 58 and the Crab Nebula), the results are in good agreement with spectra based on previous results. For the less well-studied remnants, the AMI SA observations provide higher-frequency radio observations than previously available, and better constrain their radio spectra. The AMI SA results confirm a spectral turnover at ≃11 GHz for the filled-centre remnant G74.9+1.2. We also see a possible steepening of the spectrum of the filled-centre remnant G54.1+0.3 within the AMI SA frequency band compared with lower frequencies. We confirm that G84.9+0.5, which had previously been identified as a SNR, is rather an H ii region and has a flat radio spectrum. © 2009 RAS.An 80-kpc Lyα halo around a high-redshift type-2 quasi-stellar object
Monthly Notices of the Royal Astronomical Society 393:1 (2009) 309-316