Discovery of PSR J0523-7125 as a circularly polarized variable radio source in the Large Magellanic Cloud

Astrophysical Journal IOP Publishing 930 (2022) 38

Authors:

Yuanming Wang, Tara Murphy, David L Kaplan, Teresa Klinner-Teo, Alessandro Ridolfi, Matthew Bailes, Fronefield Crawford, Shi Dai, Dougal Dobie, Bm Gaensler, Vanessa Graber, Ian Heywood, Emil Lenc, Duncan R Lorimer, Maura A McLaughlin, Andrew O'Brien, Sergio Pintaldi, Joshua Pritchard, Nanda Rea, Joshua P Ridley, Michele Ronchi, Ryan M Shannon, Gregory R Sivakoff, Adam Stewart, Ziteng Wang, Andrew Zic

Abstract:

We report the discovery of a highly circularly polarized, variable, steep-spectrum pulsar in the Australian Square Kilometre Array Pathfinder (ASKAP) Variables and Slow Transients (VAST) survey. The pulsar is located about 1° from the center of the Large Magellanic Cloud, and has a significant fractional circular polarization of ∼20%. We discovered pulsations with a period of 322.5 ms, dispersion measure (DM) of 157.5 pc cm-3, and rotation measure (RM) of +456 rad m-2 using observations from the MeerKAT and the Parkes telescopes. This DM firmly places the source, PSR J0523-7125, in the Large Magellanic Cloud (LMC). This RM is extreme compared to other pulsars in the LMC (more than twice that of the largest previously reported one). The average flux density of ∼1 mJy at 1400 MHz and ∼25 mJy at 400 MHz places it among the most luminous radio pulsars known. It likely evaded previous discovery because of its very steep radio spectrum (spectral index α ≈ -3, where S ν ∝ ν α ) and broad pulse profile (duty cycle ≳35%). We discuss implications for searches for unusual radio sources in continuum images, as well as extragalactic pulsars in the Magellanic Clouds and beyond. Our result highlighted the possibility of identifying pulsars, especially extreme pulsars, from radio continuum images. Future large-scale radio surveys will give us an unprecedented opportunity to discover more pulsars and potentially the most distant pulsars beyond the Magellanic Clouds.

Accurate Baryon Acoustic Oscillations Reconstruction via Semidiscrete Optimal Transport.

Physical review letters 128:20 (2022) 201302

Authors:

Sebastian von Hausegger, Bruno Lévy, Roya Mohayaee

Abstract:

Optimal transport theory has recently re-emerged as a vastly resourceful field of mathematics with elegant applications across physics and computer science. Harnessing methods from geometry processing, we report on the efficient implementation for a specific problem in cosmology-the reconstruction of the linear density field from low redshifts, in particular the recovery of the baryonic acoustic oscillation (BAO) scale. We demonstrate our algorithm's accuracy by retrieving the BAO scale in noiseless cosmological simulations that are dedicated to cancel cosmic variance; we find uncertainties to be reduced by a factor of 4.3 compared with performing no reconstruction, and a factor of 3.1 compared with standard reconstruction.

Searching for pulsars associated with polarised point sources using LOFAR: Initial discoveries from the TULIPP project

Astronomy & Astrophysics EDP Sciences 661 (2022) a87

Authors:

C Sobey, CG Bassa, SP O’Sullivan, JR Callingham, CM Tan, JWT Hessels, VI Kondratiev, BW Stappers, C Tiburzi, G Heald, T Shimwell, RP Breton, M Kirwan, HK Vedantham, E Carretti, J-M Grießmeier, M Haverkorn, A Karastergiou

Spatially resolved mass–metallicity relation at z  ∼  0.26 from the MUSE-Wide Survey

Astronomy & Astrophysics EDP Sciences 661 (2022) a112

Authors:

Yao Yao, Guangwen Chen, Haiyang Liu, Xinkai Chen, Zesen Lin, Hong-Xin Zhang, Yulong Gao, Xu Kong

Deep extragalactic visible legacy survey (DEVILS): the emergence of bulges and decline of disc growth since z = 1

Monthly Notices of the Royal Astronomical Society Oxford University Press 515:1 (2022) 1175-1198

Authors:

Abdolhosein Hashemizadeh, Simon P Driver, Luke JM Davies, Aaron SG Robotham, Sabine Bellstedt, Caroline Foster, Benne W Holwerda, Matt Jarvis, Steven Phillipps, Malgorzata Siudek, Jessica E Thorne, Rogier A Windhorst, Christian Wolf

Abstract:

We present a complete structural analysis of the ellipticals (E), diffuse bulges (dB), compact bulges (cB), and discs (D) within a redshift range 0 < z < 1, and stellar mass log10(M∗/M⊙) ≥ 9.5 volume-limited sample drawn from the combined DEVILS and HST-COSMOS region. We use the profit code to profile over ∼35 000 galaxies for which visual classification into single or double component was pre-defined in Paper-I. Over this redshift range, we see a growth in the total stellar mass density (SMD) of a factor of 1.5. At all epochs we find that the dominant structure, contributing to the total SMD, is the disc, and holds a fairly constant share of ∼ 60 per cent of the total SMD from z = 0.8 to z = 0.2, dropping to ∼ 30 per cent at z = 0.0 (representing ∼ 33 per cent decline in the total disc SMD). Other classes (E, dB, and cB) show steady growth in their numbers and integrated stellar mass densities. By number, the most dramatic change across the full mass range is in the growth of diffuse bulges. In terms of total SMD, the biggest gain is an increase in massive elliptical systems, rising from 20 per cent at z = 0.8 to equal that of discs at z = 0.0 (30 per cent) representing an absolute mass growth of a factor of 2.5. Overall, we see a clear picture of the emergence and growth of all three classes of spheroids over the past 8 Gyr, and infer that in the later half of the Universe's timeline spheroid-forming processes and pathways (secular evolution, mass-accretion, and mergers) appear to dominate mass transformation over quiescent disc growth.