Radio footprints of a minor merger in the Shapley Supercluster: from supercluster down to galactic scales
Astronomy and Astrophysics EDP Sciences 660 (2022) A81
Abstract:
Context. The Shapley Supercluster (äzaa 0.048) contains several tens of gravitationally bound clusters and groups, making it an ideal subject for radio studies of cluster mergers. Aims. We used new high sensitivity radio observations to investigate the less energetic events of mass assembly in the Shapley Supercluster from supercluster down to galactic scales. Methods. We created total intensity images of the full region between A3558 and A3562, from a 14;230 to a 14;1650 MHz, using ASKAP, MeerKAT and the GMRT, with sensitivities ranging from a 14;6 to a 14;100 μJy beama 1. We performed a detailed morphological and spectral study of the extended emission features, complemented with ESO-VST optical imaging and X-ray data from XMM-Newton. Results. We report the first GHz frequency detection of extremely low brightness intercluster diffuse emission on a a 14;1 Mpc scale connecting a cluster and a group, namely: A3562 and the group SC 1329a 313. It is morphologically similar to the X-ray emission in the region. We also found (1) a radio tail generated by ram pressure stripping in the galaxy SOS 61086 in SC 1329a 313; (2) a head-tail radio galaxy, whose tail is broken and culminates in a misaligned bar; (3) ultrasteep diffuse emission at the centre of A3558. Finally (4), we confirm the ultra-steep spectrum nature of the radio halo in A3562. Conclusions. Our study strongly supports the scenario of a flyby of SC 1329a 313 north of A3562 into the supercluster core. This event perturbed the centre of A3562, leaving traces of this interaction in the form of turbulence between A3562 and SC 1329a 313, at the origin of the radio bridge and eventually affecting the evolution of individual supercluster galaxies by triggering ram pressure stripping. Our work shows that minor mergers can be spectacular and have the potential to generate diffuse radio emission that carries important information on the formation of large-scale structures in the Universe.Serendipitous discovery of radio flaring behaviour from a nearby M dwarf with MeerKAT
Monthly Notices of the Royal Astronomical Society Oxford University Press 513:3 (2022) 3482-3492
Abstract:
We report on the detection of MKT J174641.0−321404, a new radio transient found in untargeted searches of wide-field MeerKAT radio images centred on the black hole X-ray binary H1743−322. MKT J174641.0−321404 is highly variable at 1.3 GHz and was detected three times during 11 observations of the field in late 2018, reaching a maximum flux density of 590 ± 60 μJy. We associate this radio transient with a high proper motion, M dwarf star SCR 1746−3214 12 pc away from the Sun. Multiwavelength observations of this M dwarf indicate flaring activity across the electromagnetic spectrum, consistent with emission expected from dMe stars, and providing upper limits on quiescent brightness in both the radio and X-ray regimes. TESS photometry reveals a rotational period for SCR 1746−3214 of 0.2292 ± 0.0025 days, which at its estimated radius makes the star a rapid rotator, comparable to other low mass systems. Dedicated spectroscopic follow up confirms the star as a mid-late spectral M dwarf with clear magnetic activity indicated by strong Hα emission. This transient’s serendipitous discovery by MeerKAT, along with multiwavelength characterisation, make it a prime demonstration of both the capabilities of the current generation of radio interferometers and the value of simultaneous observations by optical facilities such as MeerLICHT. Our results build upon the literature of of M dwarfs’ flaring behaviour, particularly relevant to the habitability of their planetary systems.21 new long-term variables in the GX 339−4 field: two years of MeerKAT monitoring
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 512:4 (2022) 5037-5066
Jet-Cocoon Geometry in the Optically Dark, Very High Energy Gamma-ray Burst 201216C
(2022)
MIGHTEE - H I. The relation between the H I gas in galaxies and the cosmic web
Monthly Notices of the Royal Astronomical Society Oxford University Press 513:2 (2022) 2168-2177