Comprehensive Radio Monitoring of the Black Hole X-Ray Binary Swift J1727.8−1613 during Its 2023–2024 Outburst

The Astrophysical Journal American Astronomical Society 988:1 (2025) 109

Authors:

Andrew K Hughes, Francesco Carotenuto, Thomas D Russell, Alexandra J Tetarenko, James CA Miller-Jones, Arash Bahramian, Joe S Bright, Fraser J Cowie, Rob Fender, Mark A Gurwell, Jasvinderjit K Khaulsay, Anastasia Kirby, Serena Jones, Elodie Lescure, Michael McCollough, Richard M Plotkin, Ramprasad Rao, Saeqa D Vrtilek, David RA Williams-Baldwin, Callan M Wood, Gregory R Sivakoff, Diego Altamirano, Piergiorgio Casella, Stéphane Corbel, James H Matthews, Andrew Siemion

Abstract:

This work presents comprehensive multifrequency radio monitoring of the black hole low-mass X-ray binary (LMXB) Swift J1727.8−1613, which underwent its first recorded outburst after its discovery in 2023 August. Through a considerable community effort, we have coalesced the data from multiple, distinct observing programs; the light curves include ∼10 months and 197 epochs of monitoring from seven radio facilities with observing frequencies ranging from (approximately) 0.3–230 GHz. The primary purpose of this work is to provide the broader astronomical community with these light curves to assist with the interpretation of other observing campaigns, particularly nonradio observing frequencies. We discuss the phenomenological evolution of the source, which included (i) multiple radio flares consistent with the launching of discrete jet ejections, the brightest of which reached ∼1 Jy; (ii) temporally evolving radio spectral indices (α), reaching values steeper than expected for optically thin synchrotron emission (α < −1) and emission with significant radiative cooling (α < −1.5). We have published a digital copy of the data and intend for this work to set a precedent for the community to continue releasing comprehensive radio light curves of future LMXB outbursts.

MIGHTEE: A first look at MIGHTEE quasars

(2025)

Authors:

Sarah V White, Ivan Delvecchio, Nathan Adams, Ian Heywood, Imogen H Whittam, Catherine L Hale, Neo Namane, Rebecca AA Bowler, Jordan D Collier

The Kangaroo’s First Hop: The Early Fast Cooling Phase of EP250108a/SN 2025kg

The Astrophysical Journal Letters American Astronomical Society 988:1 (2025) L14

Authors:

Rob AJ Eyles-Ferris, Peter G Jonker, Andrew J Levan, Daniele Bjørn Malesani, Nikhil Sarin, Christopher L Fryer, Jillian C Rastinejad, Eric Burns, Nial R Tanvir, Paul T O’Brien, Wen-fai Fong, Ilya Mandel, Benjamin P Gompertz, Charles D Kilpatrick, Steven Bloemen, Joe S Bright, Francesco Carotenuto, Gregory Corcoran, Laura Cotter, Paul J Groot, Luca Izzo, Tanmoy Laskar, Antonio Martin-Carrillo, Jesse Palmerio

Abstract:

Fast X-ray transients are a rare and poorly understood population of events. Previously difficult to detect in real time, the launch of the Einstein Probe with its Wide-field X-ray Telescope has led to a rapid expansionof the sample and allowed the exploration of these transients across the electromagnetic spectrum. EP250108a is a recently detected example linked to an optical counterpart, SN 2025kg, or “the kangaroo.” Together with a companion Letter we present our observing campaign and analysis of this event. In this letter, we focus on the early evolution of the optical counterpart over the first 6 days, including our measurement of the redshift of z = 0.17641. We compare to other supernovae and fast transients showing similar features, finding significant similarities with SN 2006aj and SN 2020bvc, and show that the source is well modelled by a rapidly expanding cooling blackbody. We show the observed X-ray and radio properties are consistent with a collapsar-powered jet that is low energy (≲1051 erg) and/or fails to break out of the dense material surrounding it. While we examine the possibility that the optical emission emerges from the shock produced as the supernova ejecta expand into a dense shell of circumstellar material, due to our X-ray and radio inferences, we favour a model where it arises from a shocked cocoon resulting from a trapped jet. This makes SN 2025 one of the few examples of this currently observationally rare event.

The Accretion-Ejection Connection in the Black Hole X-ray Binary MAXI J1820$+$070

(2025)

Authors:

Joe S Bright, Rob Fender, David M Russell, Sara E Motta, Ethan Man, Jakob van den Eijnden, Kevin Alabarta, Justine Crook-Mansour, Maria C Baglio, David A Green, Ian Heywood, Fraser Lewis, Payaswini Saikia, Paul F Scott, David J Titterington

The accretion–ejection connection in the black hole X-ray binary MAXI J1820+070

Monthly Notices of the Royal Astronomical Society Oxford University Press 541:2 (2025) 1851-1865

Authors:

Joe S Bright, Rob Fender, David M Russell, Sara E Motta, Ethan Man, Jakob van den Eijnden, Kevin Alabarta, Justine Crook-Mansour, Maria C Baglio, David A Green, Ian Heywood, Fraser Lewis, Payaswini Saikia, Paul F Scott, David J Titterington

Abstract:

The black hole X-ray binary MAXI J1820070 began its first recorded outburst in March 2018, and remained an active radio, X-ray, and optical source for over 4 yr. Due to the low distance to the source and its intrinsically high luminosity MAXI J1820070 was observed extensively over this time period, resulting in high-cadence and quasi-simultaneous observations across the electromagnetic spectrum. These data sets provide the opportunity to probe the connection between accretion and the launch of jets in greater detail than for the majority of black hole X-ray binaries. In this work, we present radio (Arcminute Microkelvin Imager Large Array, MeerKAT), X-ray (Swift), and optical (Las Cumbres Observatory) observations of MAXI J1820070 throughout its entire outburst, including its initial hard state, subsequent soft state, and further hard-state-only re-brightenings (covering March 2018 to August 2022). Due to the regularity and temporal density of our observational data we are able to create a Radio–X-ray–Optical activity plane where we find a high degree of correlation between the three wave bands during the hard states, and observe hysteresis as MAXI J1820070 enters and exits the soft state. Based on the morphology of the optical light curves we see evidence for optical jet contributions during the soft-to-hard state transition, as well as fading optical emission well before the hard to soft transition. We establish that the remarkably similar profiles of the re-brightening events are broadly consistent with modified disc instability models where irradiation from the inner accretion disc is included.