Characterizing the diffuse continuum excitations in the classical spin liquid h-YMnO3

Physical Review B American Physical Society (APS) 110:14 (2024) 144429

Authors:

Jakob Lass, Emma Y Lenander, Kristine ML Krighaar, Tara N Tošić, Dharmalingam Prabhakaran, Pascale P Deen, Sofie Holm-Janas, Kim Lefmann

Spin dynamics and possible topological magnons in the nonstoichiometric pyrochlore iridate Tb2Ir2O7 studied by RIXS

Physical Review B American Physical Society (APS) 110:14 (2024) l140401

Authors:

Q Faure, A Toschi, JR Soh, E Lhotel, B Detlefs, D Prabhakaran, DF McMorrow, Ch J Sahle

Strain-induced antiferromagnetic domain switching via the spin Jahn-Teller effect

Physical Review B American Physical Society (APS) 110:6 (2024) l060408

Authors:

Dylan Behr, Leonid S Taran, Daniel G Porter, Alessandro Bombardi, Dharmalingam Prabhakaran, Sergey V Streltsov, Roger D Johnson

A multimodal approach reveals the symmetry-breaking pathway to the broken helix in EuIn2As2

Physical Review X American Physical Society 14 (2024) 031013

Authors:

Elizabeth Donoway, T Trevisan, A Liebman-Pelaez,, R Day, K Yamakawa, Y Sun, Jian-Rui Soh, D Prabhakaran, Andrew Boothroyd, Rafael Fernandez, James Analytis, Joel Moore, Joe Orenstein, Veronika Sunko

Abstract:

Understanding and manipulating emergent phases, which are themes at the forefront of quantum-materials research, rely on identifying their underlying symmetries. This general principle has been particularly prominent in materials with coupled electronic and magnetic degrees of freedom, in which magnetic order influences the electronic band structure and can lead to exotic topological effects. However, identifying symmetry of a magnetically ordered phase can pose a challenge, particularly in the presence of small domains. Here we introduce a multimodal approach for determining magnetic structures, which combines symmetry-sensitive optical probes, scattering, and group-theoretical analysis. We apply it to EuIn2⁢As2, a material that has received attention as a candidate axion insulator. While first-principles calculations predict this state on the assumption of a simple collinear antiferromagnetic structure, subsequent neutron-scattering measurements reveal a much more intricate magnetic ground state characterized by two coexisting magnetic wave vectors reached by successive thermal phase transitions. The proposed high- and low-temperature phases are a spin helix and a state with interpenetrating helical and Néel antiferromagnetic order termed a “broken helix,” respectively. Employing a multimodal approach, we identify the magnetic structure associated with these two phases of EuIn2⁢As2. We find that the higher-temperature phase is characterized by a variation of the magnetic moment amplitude from layer to layer, with the moment vanishing entirely in every third Eu layer. The lower-temperature structure is similar to the broken helix, with one important difference: Because of local strain, the relative orientation of the magnetic structure and the lattice is not fixed. Consequently, the symmetry required to protect the axion phase is not generically protected in EuIn2⁢As2, but we show that it can be restored if the magnetic structure is tuned with uniaxial strain. Finally, we present a spin Hamiltonian that identifies the spin interactions that account for the complex magnetic order in EuIn2⁢As2. Our work highlights the importance of a multimodal approach in determining the symmetry of complex order parameters.

 

Magnetotransport of Sm2Ir2O7 across the pressure-induced quantum-critical phase boundary

npj Quantum Materials Springer Nature 9:1 (2024) 17

Authors:

MJ Coak, K Götze, T Northam De La Fuente, C Castelnovo, JP Tidey, J Singleton, AT Boothroyd, D Prabhakaran, PA Goddard