Topological Dirac semi-metals as novel, optically-switchable, helicity-dependent terahertz sources

2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) IEEE (2022)

Authors:

Jessica L Boland, Chelsea Q Xia, Djamshid A Damry, Piet Schonherr, Dharmalingam Prabhakaran, Laura M Herz, Thorsten Hesjedal, Michael B Johnston

Abstract:

The generation and control of terahertz pulses is vital for realizing the potential of terahertz radiation in several sectors, including 6G communication, security and imaging. In this work, we present the topological Dirac semimetal cadmium arsenide as a novel helicity-dependent terahertz source. We show both broadband (single-cycle) and narrowband (multi-cycle) terahertz pulses upon near-infrared photoexcitation at oblique incidence. By varying the incident angle of the photoexcitation pulse, control of the emission frequency can also be achieved, providing a candidate for a tuneable narrowband terahertz source.

Polarization anisotropy in nanowires: Fundamental concepts and progress towards terahertz-band polarization devices

Progress in Quantum Electronics Elsevier 85 (2022) 100417

Abstract:

Pronounced polarization anisotropy in semiconductor nanowires has been exploited to achieve polarization-sensitive devices operating across the electromagnetic spectrum, from the ultraviolet to the terahertz band. This contribution describes the physical origins of optical and electrical anisotropy in nanowires. Polarization anisotropy arising from dielectric contrast, and the behaviour of (nano)wire grid polarizers, are derived from first principles. This review discusses experimental observations of polarization-sensitive light–matter interactions in nanowires. It then describes how these phenomena are employed in devices that detect or modulate polarized terahertz radiation on ultrafast timescales. Such novel terahertz device concepts are expected to find use in a wide variety of applications including high-speed terahertz-band communications and molecular fingerprinting.

Impact of hole-transport layer and interface passivation on halide segregation in mixed-halide perovskites

Advanced Functional Materials Wiley 32:41 (2022) 2204825

Authors:

Vincent JY Lim, Alexander J Knight, Robert DJ Oliver, Henry J Snaith, Michael B Johnston, Laura M Herz

Abstract:

Mixed-halide perovskites offer ideal bandgaps for tandem solar cells, but photoinduced halide segregation compromises photovoltaic device performance. This study explores the influence of a hole-transport layer, necessary for a full device, by monitoring halide segregation through in situ, concurrent X-ray diffraction and photoluminescence measurements to disentangle compositional and optoelectronic changes. This work demonstrates that top coating FA0.83Cs0.17Pb(Br0.4I0.6)3 perovskite films with a poly(triaryl)amine (PTAA) hole-extraction layer surprisingly leads to suppression of halide segregation because photogenerated charge carriers are rapidly trapped at interfacial defects that do not drive halide segregation. However, the generation of iodide-enriched regions near the perovskite/PTAA interface enhances hole back-transfer from the PTAA layer through improved energy level offsets, increasing radiative recombination losses. It is further found that while passivation with a piperidinium salt slows halide segregation in perovskite films, the addition of a PTAA top-coating accelerates such effects, elucidating the specific nature of trap types that are able to drive the halide segregation process. This work highlights the importance of selective passivation techniques for achieving efficient and stable wide-bandgap perovskite photovoltaic devices.

Applicability of tin-iodide perovskites for hot-carrier PV devices – ultrafast pump-push-probe study of hot-carrier cooling dynamics

Fundacio Scito (2022)

Authors:

Aleksander Ulatowski, Michael Farrar, Henry Snaith, Michael Johnston, Laura Herz

Visualizing macroscopic inhomogeneities in perovskite solar cells

ACS Energy Letters American Chemical Society 7:7 (2022) 2311-2322

Authors:

Akash Dasgupta, Suhas Mahesh, Pietro Caprioglio, Yen-Hung Lin, Karl-Augustin Zaininger, Robert DJ Oliver, Philippe Holzhey, Suer Zhou, Melissa M McCarthy, Joel A Smith, Maximilian Frenzel, M Greyson Christoforo, James M Ball, Bernard Wenger, Henry J Snaith

Abstract:

Despite the incredible progress made, the highest efficiency perovskite solar cells are still restricted to small areas (<1 cm2). In large part, this stems from a poor understanding of the widespread spatial heterogeneity in devices. Conventional techniques to assess heterogeneities can be time consuming, operate only at microscopic length scales, and demand specialized equipment. We overcome these limitations by using luminescence imaging to reveal large, millimeter-scale heterogeneities in the inferred electronic properties. We determine spatially resolved maps of “charge collection quality”, measured using the ratio of photoluminescence intensity at open and short circuit. We apply these methods to quantify the inhomogeneities introduced by a wide range of transport layers, thereby ranking them by suitability for upscaling. We reveal that top-contacting transport layers are the dominant source of heterogeneity in the multilayer material stack. We suggest that this methodology can be used to accelerate the development of highly efficient, large-area modules, especially through high-throughput experimentation.