Resonance-Amplified Terahertz Near-Field Spectroscopy of a Single Nanowire.
Nano letters 24:49 (2024) 15716-15723
Abstract:
Nanoscale material systems are central to next-generation optoelectronic and quantum technologies, yet their development remains hindered by limited characterization tools, particularly at terahertz (THz) frequencies. Far-field THz spectroscopy techniques lack the sensitivity for investigating individual nanoscale systems, whereas in near-field THz nanoscopy, surface states, disorder, and sample-tip interactions often mask the response of the entire nanoscale system. Here, we present a THz resonance-amplified near-field spectroscopy technique that can detect subtle conductivity changes in isolated nanoscale systems─such as a single InAs nanowire─under ultrafast photoexcitation. By exploiting the spatial localization and resonant field enhancement in the gap of a bowtie antenna, our approach enables precise measurements of the nanostructures through shifts in the antenna resonant frequency, offering a direct means of extracting the system response, and unlocking investigations of ultrafast charge-carrier dynamics in isolated nanoscale and microscale systems.A thorough experimental assessment of THz-TDS plasma diagnostic techniques for nuclear fusion applications.
The Review of scientific instruments 95:10 (2024) 103519
Abstract:
In this paper, the study of a plasma diagnostic system based on the THz time domain spectroscopy technique is presented. Such a system could potentially probe a large part of the electromagnetic spectrum currently covered by several other diagnostics in a single measurement. This feature, keeping in mind the basic requirements for plasma diagnostics in nuclear fusion experiments, such as robustness and hard environment applicability, as well as durability and low maintenance, makes the diagnostic of great interest. A conceptual design of the THz-TDS diagnostic has been developed, starting from the well-established classical microwave and far infrared plasma diagnostics landscape. The physical constraints and required instrumental characteristics have been studied and are described in detail here, together with the solutions available for each type of plasma measurement. Specific experimental laboratory tests of the different experimental configurations have been carried out, evaluating the capacity and potential of the novel diagnostic, together with the instrumental constraint, within the diagnostic parameter space.Alumina nanoparticles enable optimal spray-coated perovskite thin film growth on self-assembled monolayers for efficient and reproducible photovoltaics
Journal of Materials Chemistry C Royal Society of Chemistry (RSC) 12:34 (2024) 13332-13342
Roadmap on established and emerging photovoltaics for sustainable energy conversion
Journal of Physics Energy IOP Publishing (2024)
Abstract:
<jats:title>Abstract</jats:title> <jats:p>Photovoltaics (PVs) are a critical technology for curbing growing levels of anthropogenic greenhouse gas emissions, and meeting increases in future demand for low-carbon electricity. In order to fulfil ambitions for net-zero carbon dioxide equivalent (CO<jats:sub>2</jats:sub>eq) emissions worldwide, the global cumulative capacity of solar PVs must increase by an order of magnitude from 0.9 TW<jats:sub>p</jats:sub> in 2021 to 8.5 TW<jats:sub>p</jats:sub> by 2050 according to the International Renewable Energy Agency, which is considered to be a highly conservative estimate. In 2020, the Henry Royce Institute brought together the UK PV community to discuss the critical technological and infrastructure challenges that need to be overcome to address the vast challenges in accelerating PV deployment. Herein, we examine the key developments in the global community, especially the progress made in the field since this earlier roadmap, bringing together experts primarily from the UK across the breadth of the photovoltaics community. The focus is both on the challenges in improving the efficiency, stability and levelized cost of electricity of current technologies for utility-scale PVs, as well as the fundamental questions in novel technologies that can have a significant impact on emerging markets, such as indoor PVs, space PVs, and agrivoltaics. We discuss challenges in advanced metrology and computational tools, as well as the growing synergies between PVs and solar fuels, and offer a perspective on the environmental sustainability of the PV industry. Through this roadmap, we emphasize promising pathways forward in both the short- and long-term, and for communities working on technologies across a range of maturity levels to learn from each other.</jats:p>The Role of Chemical Composition in Determining the Charge‐Carrier Dynamics in (AgI)x(BiI3)y Rudorffites
Advanced Functional Materials Wiley 34:32 (2024)