Impact of residual triphenylphosphine oxide on the crystallization of vapor-deposited metal halide perovskite films

Journal of Vacuum Science & Technology B Nanotechnology and Microelectronics Materials Processing Measurement and Phenomena American Vacuum Society 44:1 (2026) 012203

Authors:

Sarah J Scripps, Siyu Yan, Qimu Yuan, Laura M Herz, Nakita K Noel, Michael B Johnston

Abstract:

Thermal evaporation is an industrially compatible technique for fabricating metal halide perovskite thin films, without the requirement for hazardous solvents. It offers precise control over film thickness and is a good candidate for large-scale production of commercial optoelectronic metal halide perovskite devices, such as solar cells. The use of additives to passivate electronic defects in solution-processed metal halide perovskite has led to dramatic increases in device performance. However, there are a few reports of vapor-deposited films with coevaporated passivating agents. Triphenylphosphine oxide (TPPO) has been used as an effective surface passivating agent in solution-processed metal halide perovskite films. It is a promising candidate passivating agent for coevaporation, where it is beginning to be used with encouraging results. However, here we report that triphenylphosphine oxide is incompatible with thermal deposition in the same deposition chamber. Such TPPO remnants are found to result in severe suppression of the perovskite phase, long-range crystalline ordering, and optical absorption of lead halide perovskite films subsequently deposited in the same chamber. TPPO contamination persists even through repeated baking cycles, with the reduction of the contaminant to acceptable levels requiring vacuum chamber dismantling and manual cleaning. We conclude that TPPO should not be coevaporated in order to prevent the contamination of future batches.

Control Over the Microstructure of Vapor‐Deposited CsPbBr 3 Enhances Amplified Spontaneous Emission

Advanced Optical Materials Wiley (2025) e02160

Authors:

Qimu Yuan, Weilun Li, Ford M Wagner, Vincent J‐Y Lim, Laura M Herz, Joanne Etheridge, Michael B Johnston

Abstract:

Inorganic cesium‐based metal halide perovskite (MHP) semiconductors have great potential as active layers in optoelectronic devices, such as perovskite light‐emitting diodes (PeLEDs) and perovskite lasers. However, precise control of crystal type, quality, and thickness is required to create high‐performance and reproducible devices. Vapor‐phase vacuum deposition enables fabrication of MHP thin films and devices with excellent uniformity and control over layer thickness, although a full understanding of crystal growth mechanisms and products has proved elusive. Here, conditions of vapor co‐deposition of CsBr and PbBr are related with the optical performance and atomic microstructure of resulting CsPbBr3 thin films. It is found that the structure is predominantly photoactive γ‐CsPbBr3 over a wide range of conditions, but the presence of impurity phases and Ruddlesden–Popper (RP) planar defects both degrade optical performance as quantified through measured amplified spontaneous emission (ASE) thresholds. Furthermore, the atomic structure of the dominant impurity phases is resolved: CsPb2Br5 and Cs4PbBr6. It is revealed that a small nominal excess of CsBr‐precursor flux during co‐evaporation can significantly enhance the nucleation of thin films, resulting in well‐defined grains greater than 500 nm in size and the relative suppression of RP planar defects. Such films exhibit intensified photoluminescence (PL) emission and a reduced ASE threshold of 30.9 µJ cm−2.

Optically Determined Hole Effective Mass in Tin-Iodide Perovskite Films

ACS Energy Letters American Chemical Society 10:9 (2025) 4589-4595

Authors:

Vincent J-Y Lim, Marcello Righetto, Michael D Farrar, Thomas Siday, Henry J Snaith, Michael B Johnston, Laura M Herz

Abstract:

Tin-halide perovskites currently offer the best photovoltaic performance of lead-free metal-halide semiconductors. However, their transport properties are mostly dominated by holes, owing to ubiquitous self-doping. Here we demonstrate a noncontact, optical spectroscopic method to determine the effective mass of the dominant hole species in FASnI3, by investigating a series of thin films with hole densities finely tuned through either SnF2 additive concentration or controlled exposure to air. We accurately determine the plasma frequency from mid-infrared reflectance spectra by modeling changes in the vibrational response of the FA cation as the plasma edge shifts through the molecular resonance. Our approach yields a hole effective mass of 0.28m e for FASnI3 and demonstrates parabolicity within ∼100 meV of the valence band edge. An absence of Fano contributions further highlights insignificant coupling between the hole plasma and FA cation. Overall, this approach enables noncontact screening of thin-film materials for optimized charge-carrier transport properties.

Impact of Charge Transport Layers on the Structural and Optoelectronic Properties of Coevaporated Cu 2 AgBiI 6

ACS Applied Materials & Interfaces American Chemical Society 17:28 (2025) 40363-40374

Authors:

Jae Eun Lee, Marcello Righetto, Benjamin WJ Putland, Siyu Yan, Joshua RS Lilly, Snigdha Lal, Heon Jin, Nakita K Noel, Michael B Johnston, Henry J Snaith, Laura M Herz

Abstract:

The copper–silver–bismuth–iodide compound Cu2AgBiI6 has emerged as a promising lead-free and environmentally friendly alternative to wide-bandgap lead-halide perovskites for applications in multijunction solar cells. Despite its promising optoelectronic properties, the efficiency of Cu2AgBiI6 is still severely limited by poor charge collection. Here, we investigate the impact of commonly used charge transport layers (CTLs), including poly­[bis­(4-phenyl)­(2,4,6-trimethylphenyl)­amine] (PTAA), CuI, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), and SnO2, on the structural and optoelectronic properties of coevaporated Cu2AgBiI6 thin films. We reveal that while organic transport layers, such as PTAA and PCBM, form a relatively benign interface, inorganic transport layers, such as CuI and SnO2, induce the formation of unintended impurity phases within the CuI–AgI–BiI3 solid solution space, significantly influencing structural and optoelectronic properties. We demonstrate that identification of these impurity phases requires careful cross-validation combining absorption, X-ray diffraction and THz photoconductivity spectroscopy because their structural and optoelectronic properties are very similar to those of Cu2AgBiI6. Our findings highlight the critical role of CTLs in determining the structural and optoelectronic properties of coevaporated copper–silver–bismuth–iodide thin films and underscore the need for advanced interface engineering to optimize device efficiency and reproducibility.

Ruddlesden–Popper Defects Act as a Free Surface: Role in Formation and Photophysical Properties of CsPbI 3

Advanced Materials Wiley (2025) 2501788

Authors:

Weilun Li, Qimu Yuan, Yinan Chen, Joshua RS Lilly, Marina R Filip, Laura M Herz, Michael B Johnston, Joanne Etheridge

Abstract:

The perovskite semiconductor, CsPbI3, holds excellent promise for solar cell applications due to its suitable bandgap. However, achieving phase‐stable CsPbI3 solar cells with high power conversion efficiency remains a major challenge. Ruddlesden–Popper (RP) defects have been identified in a range of perovskite semiconductors, including CsPbI3. However, there is limited understanding as to why they form or their impact on stability and photophysical properties. Here, the prevalence of RP defects is increased with increased Cs‐excess in vapor‐deposited CsPbI3 thin films while superior structural stability but inferior photophysical properties are observed. Significantly, using electron microscopy, it is found that the atomic positions at the planar defect are comparable to those of a free surface, revealing their role in phase stabilization. Density functional theory (DFT) calculations reveal the RP planes are electronically benign, however, antisites observed at RP turning points are likely to be malign. Therefore it is proposed that increasing RP planes while reducing RP turning points offers a breakthrough for improving both phase stability and photophysical performance. The formation mechanism revealed here can apply more generally to RP structures in other perovskite systems.