Tracking electron and hole dynamics in 3D dirac semimetals

Proceedings of the 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2021) IEEE (2021)

Authors:

Jl Boland, Da Damry, Cq Xia, M Filip, P Schönherr, T Hesjedal, D Prabhakaran, Lm Herz, Mb Johnston

Abstract:

Using ultrafast optical-pump terahertz-probe spectroscopy (OPTP) and ultrafast terahertz emission spectroscopy, we showcase the electron and hole dynamics in Cd3As2 nanowires (NWs), a well-known 3D Dirac semimetal a subgroup of the newly discovered . A temperature-dependent photoconductivity measurement was carried out yielding an incredibly high electron mobility ~ 16,000 cm2/Vs at 5K. Strong THz emission due to helicity-dependent surface photocurrents was also observed for both nanowires and single crystal (SC) which is highly desirable for devices such as THz sources.

Ultrafast photo-induced phonon hardening due to Pauli blocking in MAPbI3 single-crystal and polycrystalline perovskites

Journal of Physics: Materials IOP Publishing 4:4 (2021) 044017

Authors:

Chelsea Xia, Samuel Ponce, Jiali Peng, Jay Patel, Adam Wright, Hans Kraus, Laura Herz, Feliciano Giustino, Michael Johnston, Aleksander Ulatowski

Abstract:

Metal-halide perovskite semiconductors have attracted intensive interest in the last decade, particularly for applications in photovoltaics. Low-energy optical phonons combined with significant crystal anharmonicity play an important role in charge-carrier cooling and scattering in these materials, strongly affecting their optoelectronic properties. We have observed optical phonons associated with Pb—I stretching in both MAPbI3 single crystals and polycrystalline thin films as a function of temperature by measuring their terahertz (THz) conductivity spectra with and without photoexcitation. An anomalous bond hardening was observed under above-bandgap illumination for both single-crystal and polycrystalline MAPbI3. First-principles calculations reproduced this photo-induced bond hardening and identified a related lattice contraction (photostriction), with the mechanism revealed as Pauli blocking. For single-crystal MAPbI3, phonon lifetimes were significantly longer and phonon frequencies shifted less with temperature, compared with polycrystalline MAPbI3. We attribute these differences to increased crystalline disorder, associated with grain boundaries and strain in the polycrystalline MAPbI3. Thus we provide fundamental insight into the photoexcitation and electron–phonon coupling in MAPbI3.

Hot electron cooling in InSb probed by ultrafast time-resolved terahertz cyclotron resonance

(2021)

Authors:

Chelsea Q Xia, Maurizio Monti, Jessica L Boland, Laura M Herz, James Lloyd-Hughes, Marina R Filip, Michael B Johnston

Limits to Electrical Mobility in Lead-Halide Perovskite Semiconductors

(2021)

Authors:

Chelsea Q Xia, Jiali Peng, Samuel Poncé, Jay B Patel, Adam D Wright, Timothy W Crothers, Mathias Uller Rothmann, Juliane Borchert, Rebecca L Milot, Hans Kraus, Qianqian Lin, Feliciano Giustino, Laura M Herz, Michael B Johnston

Revealing ultrafast charge-carrier thermalization in tin-iodide perovskites through novel pump-push-probe terahertz spectroscopy

ACS Photonics American Chemical Society 8:8 (2021) 2509-2518

Authors:

Henry Snaith, Michael Johnson, Aleksander Ulatowski, Laura Herz

Abstract:

Tin-iodide perovskites are an important group of semiconductors for photovoltaic applications, promising higher intrinsic charge-carrier mobilities and lower toxicity than their lead-based counterparts. Controllable tin vacancy formation and the ensuing hole doping provide interesting opportunities to investigate dynamic intraband transitions of charge carriers in these materials. Here, we present for the first time an experimental implementation of a novel Optical-Pump–IR-Push–THz-Probe spectroscopic technique and demonstrate its suitability to investigate the intraband relaxation dynamics of charge carriers brought into non-equilibrium by an infrared “push” pulse. We observe a push-induced decrease of terahertz conductivity for both chemically- and photodoped FA0.83Cs0.17SnI3 thin films and show that these effects derive from stimulated THz emission. We use this technique to reveal that newly photogenerated charge carriers relax within the bands of FA0.83Cs0.17SnI3 on a sub-picosecond timescale when a large, already fully thermalized (cold) population of charge-carriers is present. Such rapid dissipation of the initial charge-carrier energy suggests that the propensity of tin halide perovskites towards unintentional self-doping resulting from tin vacancy formation makes these materials less suited to implementation in hot-carrier solar cells than their lead-based counterparts.