Ultrafast excited-state localization in Cs2AgBiBr6 double perovskite
Journal of Physical Chemistry Letters American Chemical Society 12:13 (2021) 3352-3360
Abstract:
Cs2AgBiBr6 is a promising metal halide double perovskite offering the possibility of efficient photovoltaic devices based on lead-free materials. Here, we report on the evolution of photoexcited charge carriers in Cs2AgBiBr6 using a combination of temperature-dependent photoluminescence, absorption and optical pump–terahertz probe spectroscopy. We observe rapid decays in terahertz photoconductivity transients that reveal an ultrafast, barrier-free localization of free carriers on the time scale of 1.0 ps to an intrinsic small polaronic state. While the initially photogenerated delocalized charge carriers show bandlike transport, the self-trapped, small polaronic state exhibits temperature-activated mobilities, allowing the mobilities of both to still exceed 1 cm2 V–1 s–1 at room temperature. Self-trapped charge carriers subsequently diffuse to color centers, causing broad emission that is strongly red-shifted from a direct band edge whose band gap and associated exciton binding energy shrink with increasing temperature in a correlated manner. Overall, our observations suggest that strong electron–phonon coupling in this material induces rapid charge-carrier localization.Unveiling the ultrafast optoelectronic properties of 3D Dirac semi-metal Cd3As2
Proceedings of the 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2020) IEEE (2021)
Abstract:
We employ ultrafast optical-pump terahertz-probe spectroscopy and ultrafast THz emission spectroscopy to investigate the ultrafast charge carrier dynamics in the 3D Dirac semi-metal CdAs. We extract the temperature-dependent electron mobility (16,000cmVs at 5K) for CdAs nanowire ensemble. We also demonstrate strong THz emission from both CdAs single crystal and nanowires, whose polarity depends strongly on incident angle and pump polarisation.Heterogeneous integration of semiconductor nanowires in 2D and 3D nanophotonic systems
SPIE, the international society for optics and photonics (2021) 31
Crystallization of CsPbBr3 single crystals in water for X-ray detection.
Nature communications 12:1 (2021) 1531
Abstract:
Metal halide perovskites have fascinated the research community over the past decade, and demonstrated unprecedented success in optoelectronics. In particular, perovskite single crystals have emerged as promising candidates for ionization radiation detection, due to the excellent opto-electronic properties. However, most of the reported crystals are grown in organic solvents and require high temperature. In this work, we develop a low-temperature crystallization strategy to grow CsPbBr3 perovskite single crystals in water. Then, we carefully investigate the structure and optoelectronic properties of the crystals obtained, and compare them with CsPbBr3 crystals grown in dimethyl sulfoxide. Interestingly, the water grown crystals exhibit a distinct crystal habit, superior charge transport properties and better stability in air. We also fabricate X-ray detectors based on the CsPbBr3 crystals, and systematically characterize their device performance. The crystals grown in water demonstrate great potential for X-ray imaging with enhanced performance metrics.Halide segregation in mixed-halide perovskites: influence of A-site cations
ACS Energy Letters American Chemical Society 6:2 (2021) 799-808