Extension of gyrokinetics to transport time scales
ArXiv 1309.7385 (2013)
Abstract:
Gyrokinetic simulations have greatly improved our theoretical understanding of turbulent transport in fusion devices. Most gyrokinetic models in use are delta-f simulations in which the slowly varying radial profiles of density and temperature are assumed to be constant for turbulence saturation times, and only the turbulent electromagnetic fluctuations are calculated. New massive simulations are being built to self-consistently determine the radial profiles of density and temperature. However, these new codes have failed to realize that modern gyrokinetic formulations, composed of a gyrokinetic Fokker-Planck equation and a gyrokinetic quasineutrality equation, are only valid for delta-f simulations that do not reach the longer transport time scales necessary to evolve radial profiles. In tokamaks, due to axisymmetry, the evolution of the axisymmetric radial electric field is a challenging problem requiring substantial modifications to gyrokinetic treatments. In this thesis, I study the effect of turbulence on the global electric field and plasma flows. By studying the current conservation equation, or vorticity equation, I prove that the long wavelength, axisymmetric flow must remain neoclassical and I show that the tokamak is intrinsically ambipolar, i.e., the radial current is zero to a very high order for any long wavelength radial electric field. Intrinsic ambipolarity is the origin of the problems with the modern gyrokinetic approach since the lower order gyrokinetic quasineutrality (if properly evaluated) is effectively independent of the radial electric field. I propose a new gyrokinetic formalism to solve for the global radial electric field.A current driven electromagnetic mode in sheared and toroidal configurations
ArXiv 1309.1189 (2013)
Abstract:
The induced electric field in a tokamak drives a parallel electron current flow. In an inhomogeneous, finite beta plasma, when this electron flow is comparable to the ion thermal speed, the Alfven mode wave solutions of the electromagnetic gyrokinetic equation can become nearly purely growing kink modes. Using the new "low-flow" version of the gyrokinetic code GS2 developed for momentum transport studies [Barnes et al 2013 Phys. Rev. Lett. 111, 055005], we are able to model the effect of the induced parallel electric field on the electron distribution to study the destabilizing influence of current on stability. We identify high mode number kink modes in GS2 simulations and make comparisons to analytical theory in sheared magnetic geometry. We demonstrate reassuring agreement with analytical results both in terms of parametric dependences of mode frequencies and growth rates, and regarding the radial mode structure.A current driven electromagnetic mode in sheared and toroidal configurations
(2013)
Conditions for up-down asymmetry in the core of tokamak equilibria
ArXiv 1308.4841 (2013)
Abstract:
A local magnetic equilibrium solution is sought around the magnetic axis in order to identify the key parameters defining the magnetic-surface's up-down asymmetry in the core of tokamak plasmas. The asymmetry is found to be determined essentially by the ratio of the toroidal current density flowing on axis to the fraction of the external field's odd perturbation that manages to propagate from the plasma boundary into the core. The predictions are tested and illustrated first with an analytical Solovev equilibrium and then using experimentally relevant numerical equilibria. Hollow current-density distributions, and hence reverse magnetic shear, are seen to be crucial to bring into the core asymmetry values that are usually found only near the plasma edge.RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS
The Astrophysical Journal American Astronomical Society 773:2 (2013) 187