Suppression of pair beam instabilities in a laboratory analogue of blazar pair cascades
Proceedings of the National Academy of Sciences National Academy of Sciences 122:45 (2025) e2513365122
Abstract:
The generation of dense electron-positron pair beams in the laboratory can enable direct tests of theoretical models of γ-ray bursts and active galactic nuclei. We have successfully achieved this using ultrarelativistic protons accelerated by the Super Proton Synchrotron at (CERN). In the first application of this experimental platform, the stability of the pair beam is studied as it propagates through a meter-length plasma, analogous to TeV γ-ray-induced pair cascades in the intergalactic medium. It has been argued that pair beam instabilities disrupt the cascade, thus accounting for the observed lack of reprocessed GeV emission from TeV blazars. If true, this would remove the need for a moderate strength intergalactic magnetic field to explain the observations. We find that the pair beam instability is suppressed if the beam is not perfectly collimated or monochromatic, hence the lower limit to the intergalactic magnetic field inferred from γ-ray observations of blazars is robust.A Million Three-body Binaries Caught by Gaia
The Astrophysical Journal American Astronomical Society 993:2 (2025) 183-183
Abstract:
Black hole merger rates in AGN: contribution from gas-captured binaries
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1896
Abstract:
Hydrodynamic simulations of black hole evolution in AGN discs II: inclination damping for partially embedded satellites
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 543:4 (2025) 3768-3782
Abstract:
ABSTRACT We investigate the evolution of black holes on orbits with small inclinations ($i < 2^\circ$) to the gaseous discs of active galactic nuclei (AGNs). We perform 3D adiabatic hydrodynamic simulations within a shearing frame, studying the damping of inclination by black hole-gas gravitation. We find that for objects with $i< 3H_0R_0^{-1}$, where $H_0R_0^{-1}$ is the disc aspect ratio, the inclination lost per mid-plane crossing is proportional to the inclination preceding the crossing, resulting in a net exponential decay in inclination. For objects with $i>3H_0R_0^{-1}$, damping efficiency decreases for higher inclinations. We consider a variety of different AGN environments, finding that damping is stronger for systems with a higher ambient Hill mass: the initial gas mass within the BH sphere of influence. We provide a fitting formula for the inclination changes as a function of Hill mass. We find reasonable agreement between the damping driven by gas gravity in the simulations and the damping driven by accretion under a Hill-limited Bondi–Hoyle–Lyttleton prescription. We find that gas dynamical friction consistently overestimates the strength of damping, especially for lower inclination systems, by at least an order of magnitude. For regions in the AGN disc where coplanar binary black hole formation by gas dissipation is efficient, we find that the simulated damping time-scales are especially short with $\tau _d < 10P_\mathrm{SMBH}$. We conclude that as the time-scales for inclination damping are shorter than the expected interaction time between isolated black holes, the vast majority of binaries formed from gas capture should form from components with negligible inclination to the AGN disc.Large-scale-structure observables in general relativity validated at second order
Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:10 (2025) 105-105