Suppression of pair beam instabilities in a laboratory analogue of blazar pair cascades
Proceedings of the National Academy of Sciences National Academy of Sciences 122:45 (2025) e2513365122
Abstract:
The generation of dense electron-positron pair beams in the laboratory can enable direct tests of theoretical models of γ-ray bursts and active galactic nuclei. We have successfully achieved this using ultrarelativistic protons accelerated by the Super Proton Synchrotron at (CERN). In the first application of this experimental platform, the stability of the pair beam is studied as it propagates through a meter-length plasma, analogous to TeV γ-ray-induced pair cascades in the intergalactic medium. It has been argued that pair beam instabilities disrupt the cascade, thus accounting for the observed lack of reprocessed GeV emission from TeV blazars. If true, this would remove the need for a moderate strength intergalactic magnetic field to explain the observations. We find that the pair beam instability is suppressed if the beam is not perfectly collimated or monochromatic, hence the lower limit to the intergalactic magnetic field inferred from γ-ray observations of blazars is robust.Black hole merger rates in AGN: contribution from gas-captured binaries
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1896
Abstract:
A Million Three-body Binaries Caught by Gaia
The Astrophysical Journal American Astronomical Society 993:2 (2025) 183
Abstract:
Gaia observations have revealed over a million stellar binary candidates within ∼1 kpc of the Sun, predominantly characterized by orbital separations >103 au and eccentricities >0.7. The prevalence of such wide, eccentric binaries has proven challenging to explain through canonical binary formation channels. However, recent advances in our understanding of three-body binary formation (3BBF)—new binary assembly by the gravitational scattering of three unbound bodies (3UB)—have shown that 3BBF in star clusters can efficiently generate wide, highly eccentric binaries. We further explore this possibility by constructing a semi-analytic model of the Galactic binary population in the solar neighborhood, originating from 3BBF in star clusters and subsequently migrating to the solar neighborhood within a Hubble time. The model relies on 3BBF scattering experiments to determine how the 3BBF rate and resulting binary properties scale with local stellar density, velocity dispersion, and physically motivated limits to 3UB encounters within a clusters’ tidal field. The Galactic star cluster population is modeled by incorporating up-to-date prescriptions for the Galaxy’s star formation history as well as the birth properties and internal evolution of its star clusters. Finally, we account for binary disruption induced by perturbations from stellar interactions before cluster dissolution and the subsequent changes and disruption of binary orbital elements induced by dynamical interactions in the Galactic field. Without any explicit fine-tuning, our model closely reproduces the total number of Gaia’s wide binaries and the separation and eccentricity distributions, suggesting that 3BBF may be an important formation channel for these enigmatic systems.Modelling cosmic-ray transport: magnetised versus unmagnetised motion in astrophysical magnetic turbulence
Journal of Plasma Physics Cambridge University Press 91:5 (2025) E147
Abstract:
Cosmic-ray transport in turbulent astrophysical environments remains a multifaceted problem and, despite decades of study, the impact of complex magnetic field geometry – evident in simulations and observations – has only recently received more focussed attention. To understand how ensemble-averaged transport behaviour emerges from the intricate interactions between cosmic rays and structured magnetic turbulence, we run test-particle experiments in snapshots of a strongly turbulent magnetohydrodynamics simulation. We characterise particle–turbulence interactions via the gyro radii of particles and their experienced field-line curvatures, which reveals two distinct transport modes: magnetised motion, where particles are tightly bound to strong coherent flux tubes and undergo large-scale mirroring; and unmagnetised motion, characterised by chaotic scattering through weak and highly tangled regions of the magnetic field. We formulate an effective stochastic process for each mode: compound subdiffusion with long mean free paths for magnetised motion, and a Langevin process with short mean free paths for unmagnetised motion. A combined stochastic walker that alternates between these two modes accurately reproduces the mean squared displacements observed in the test-particle data. Our results emphasise the critical role of coherent magnetic structures in comprehensively understanding cosmic-ray transport and lay a foundation for developing a theory of geometry-mediated transport.Large-scale-structure observables in general relativity validated at second order
Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:10 (2025) 105