Measuring the beamlet divergence in NBI systems for fusion: A diagnostic comparison

Fusion Engineering and Design Elsevier 215 (2025) 114951

Authors:

Niek den Harder, Michael Barnes, Andreas Döring, Bernd Heinemann, Bruno Laterza, Isabella Mario, Antonio Pimazzoni, Carlo Poggi, Alessandro La Rosa, Emanuele Sartori, Beatrice Segalini, Gianluigi Serianni, Alastair Shepherd, Christian Wimmer, Dirk Wünderlich, Ursel Fantz

Prompt gravitational-wave mergers aided by gas in Active Galactic Nuclei: The hydrodynamics of binary-single black hole scatterings

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025)

Authors:

Connar Rowan, Henry Whitehead, Gaia Fabj, Pankaj Saini, Bence Kocsis, Martin Pessah, Johan Samsing

Abstract:

Abstract Black hole binary systems embedded in AGN discs have been proposed as a source of the observed gravitational waves (GWs) from LIGO-Virgo-KAGRA. Studies have indicated binary-single encounters could be common place within this population, yet we lack a comprehensive understanding of how the ambient gas affects the dynamics of these three-body encounters. We present the first hydrodynamical simulations of black hole binary-single encounters in an AGN disc. We find gas is a non-negligible component of binary-single interactions, leading to unique dynamics, including the formation of quasi-stable hierarchical triples. The gas efficiently and reliably dissipates the energy of the three-body system, hardening the triple provided it remains bound after the initial encounter. The hardening timescale is shorter for higher ambient gas densities. Formed triples can be hardened reliably by 2 − 3 orders of magnitude relative to the initial binary semi-major axis within less than a few AGN orbits, limited only by our resolution. The gas hardening of the triple enhances the probability for a merger by a minimum factor of 3.5 − 8 depending on our assumptions. In several cases, two of the black holes can execute periapses of less than 10 Schwarzschild radii, where the dynamics were fully resolved for previous close approaches. Our results suggest that current timescale estimates (without gas drag) for binary-single induced mergers are an upper bound. The shrinkage of the triple by gas has the prospect of increasing the chance for unique GW phenomena such as residual eccentricity, dephasing from a third object and double GW mergers.

Collisional whistler instability and electron temperature staircase in inhomogeneous plasma

Journal of Plasma Physics Cambridge University Press (CUP) 91:2 (2025) E45

Authors:

Na Lopez, Afa Bott, Aa Schekochihin

Abstract:

<jats:p>High-beta magnetised plasmas often exhibit anomalously structured temperature profiles, as seen from galaxy cluster observations and recent experiments. It is well known that when such plasmas are collisionless, temperature gradients along the magnetic field can excite whistler waves that efficiently scatter electrons to limit their heat transport. Only recently has it been shown that parallel temperature gradients can excite whistler waves also in collisional plasmas. Here, we develop a Wigner–Moyal theory for the collisional whistler instability starting from Braginskii-like fluid equations in a slab geometry. This formalism is necessary because, for a large region in parameter space, the fastest-growing whistler waves have wavelengths comparable to the background temperature gradients. We find additional damping terms in the expression for the instability growth rate involving inhomogeneous Nernst advection and resistivity. They (i) enable whistler waves to re-arrange the electron temperature profile via growth, propagation and subsequent dissipation, and (ii) allow non-constant temperature profiles to exist stably. For high-beta plasmas, the marginally stable solutions take the form of a temperature staircase along the magnetic field lines. The electron heat flux can also be suppressed by the Ettingshausen effect when the whistler intensity profile is sufficiently peaked and oriented opposite the background temperature gradient. This mechanism allows cold fronts without magnetic draping, might reduce parallel heat losses in inertial fusion experiments and generally demonstrates that whistler waves can regulate transport even in the collisional limit.</jats:p>

A Million Three-body Binaries Caught by Gaia

ArXiv 2503.14605 (2025)

Authors:

Dany Atallah, Yonadav Barry Ginat, Newlin C Weatherford

Measurement of Zero-Frequency Fluctuations Generated by Coupling between Alfvén Modes in the JET Tokamak.

Physical review letters American Physical Society (APS) 134:9 (2025) 95103

Authors:

J Ruiz Ruiz, J Garcia, M Barnes, M Dreval, C Giroud, Vh Hall-Chen, Mr Hardman, Jc Hillesheim, Y Kazakov, S Mazzi, Bs Patel, Fi Parra, Aa Schekochihin, Ž Štancar, JET Contributors and the EUROfusion Tokamak Exploitation Team

Abstract:

We report the first experimental detection of a zero-frequency fluctuation that is pumped by an Alfvén mode in a magnetically confined plasma. Core-localized Alfvén modes of frequency inside the toroidicity-induced gap (and its harmonics) exhibit three-wave coupling interactions with a zero-frequency fluctuation. The observation of the zero-frequency fluctuation is consistent with theoretical and numerical predictions of zonal modes pumped by Alfvén modes, and is correlated with an increase in the deep core ion temperature, temperature gradient, confinement factor H_{89,P}, and a reduction in the main ion heat diffusivity. Despite the energetic particle transport induced by the Alfvén eigenmodes, the generation of a zero-frequency fluctuation that can suppress the turbulence leads to an overall improvement of confinement.