Suppression of pair beam instabilities in a laboratory analogue of blazar pair cascades

Proceedings of the National Academy of Sciences National Academy of Sciences 122:45 (2025) e2513365122

Authors:

Charles Arrowsmith, Francesco Miniati, Pablo J Bilbao, Pascal Simon, Archie Bott, Stephane Burger, Hui Chen, Filipe D Cruz, Tristan Davenne, Anthony Dyson, Ilias Efthymiopoulos, Dustin H Froula, Alice Goillot, Jon T Gudmundsson, Dan Haberberger, Jack WD Halliday, Thomas Hodge, Brian T Huffman, Sam Iaquinta, G Marshall, Brian Reville, Subir Sarkar, Alexander Schekochihin, Luis O Silva, Raspberry Simpson, Vasiliki Stergiou, Raoul MGM Trines, Thibault Vieu, Nikolaos Charitonidis, Robert Bingham, Gianluca Gregori

Abstract:

The generation of dense electron-positron pair beams in the laboratory can enable direct tests of theoretical models of γ-ray bursts and active galactic nuclei. We have successfully achieved this using ultrarelativistic protons accelerated by the Super Proton Synchrotron at (CERN). In the first application of this experimental platform, the stability of the pair beam is studied as it propagates through a meter-length plasma, analogous to TeV γ-ray-induced pair cascades in the intergalactic medium. It has been argued that pair beam instabilities disrupt the cascade, thus accounting for the observed lack of reprocessed GeV emission from TeV blazars. If true, this would remove the need for a moderate strength intergalactic magnetic field to explain the observations. We find that the pair beam instability is suppressed if the beam is not perfectly collimated or monochromatic, hence the lower limit to the intergalactic magnetic field inferred from γ-ray observations of blazars is robust.

A Million Three-body Binaries Caught by Gaia

The Astrophysical Journal American Astronomical Society 993:2 (2025) 183-183

Authors:

Dany Atallah, Yonadav Barry Ginat, Newlin C Weatherford

Abstract:

Abstract Gaia observations have revealed over a million stellar binary candidates within ∼1 kpc of the Sun, predominantly characterized by orbital separations >10 3 au and eccentricities >0.7. The prevalence of such wide, eccentric binaries has proven challenging to explain through canonical binary formation channels. However, recent advances in our understanding of three-body binary formation (3BBF)—new binary assembly by the gravitational scattering of three unbound bodies (3UB)—have shown that 3BBF in star clusters can efficiently generate wide, highly eccentric binaries. We further explore this possibility by constructing a semi-analytic model of the Galactic binary population in the solar neighborhood, originating from 3BBF in star clusters and subsequently migrating to the solar neighborhood within a Hubble time. The model relies on 3BBF scattering experiments to determine how the 3BBF rate and resulting binary properties scale with local stellar density, velocity dispersion, and physically motivated limits to 3UB encounters within a clusters’ tidal field. The Galactic star cluster population is modeled by incorporating up-to-date prescriptions for the Galaxy’s star formation history as well as the birth properties and internal evolution of its star clusters. Finally, we account for binary disruption induced by perturbations from stellar interactions before cluster dissolution and the subsequent changes and disruption of binary orbital elements induced by dynamical interactions in the Galactic field. Without any explicit fine-tuning, our model closely reproduces the total number of Gaia’s wide binaries and the separation and eccentricity distributions, suggesting that 3BBF may be an important formation channel for these enigmatic systems.

Black hole merger rates in AGN: contribution from gas-captured binaries

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1896

Authors:

Connar Rowan, Henry Whitehead, Bence Kocsis

Abstract:

Abstract Merging black hole (BH) binaries in AGN discs formed through two-body scatterings via the “gas-capture” process may explain a significant fraction of BH mergers in AGN and a non-negligible contribution to the observed rate from LIGO-VIRGO-KAGRA. We perform Monte Carlo simulations of binary BH formation, evolution and mergers across the observed AGN mass function using a novel physically motivated treatment for the gas-capture process derived from hydrodynamical simulations of BH-BH encounters in AGN. Our models suggest that gas-captured binaries could result in merger rates of 0.73 − 7.1Gpc−3yr−1. Mergers from AGN are dominated by AGN with supermassive BH masses of ∼107M⊙, with 90 % of mergers occurring in the range ∼106M⊙ − 108M⊙. The merging mass distribution is flatter than the initial BH mass power law by a factor Δξ = 1.1 − 1.2, as larger BHs align with the disc and form binaries more efficiently. Similarly, the merging mass ratio distribution is flatter, therefore the AGN channel could explain high mass and unequal mass ratio detections such as GW190521 and GW190814. Using a simpler dynamical friction treatment for the binary formation process, the results are similar, where the primary bottleneck is the alignment time with the disc. The most influential parameters are the anticipated number of BHs and their mass function. Given the many uncertainties that remain in the AGN channel, we expect the true uncertainty extends beyond our predicted rates. Nonetheless, we conclude that AGN remain an important channel for consideration, particularly for gravitational wave detections involving one or two high mass BHs.

Hydrodynamic simulations of black hole evolution in AGN discs II: inclination damping for partially embedded satellites

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 543:4 (2025) 3768-3782

Authors:

Henry Whitehead, Connar Rowan, Bence Kocsis

Abstract:

ABSTRACT We investigate the evolution of black holes on orbits with small inclinations ($i < 2^\circ$) to the gaseous discs of active galactic nuclei (AGNs). We perform 3D adiabatic hydrodynamic simulations within a shearing frame, studying the damping of inclination by black hole-gas gravitation. We find that for objects with $i< 3H_0R_0^{-1}$, where $H_0R_0^{-1}$ is the disc aspect ratio, the inclination lost per mid-plane crossing is proportional to the inclination preceding the crossing, resulting in a net exponential decay in inclination. For objects with $i>3H_0R_0^{-1}$, damping efficiency decreases for higher inclinations. We consider a variety of different AGN environments, finding that damping is stronger for systems with a higher ambient Hill mass: the initial gas mass within the BH sphere of influence. We provide a fitting formula for the inclination changes as a function of Hill mass. We find reasonable agreement between the damping driven by gas gravity in the simulations and the damping driven by accretion under a Hill-limited Bondi–Hoyle–Lyttleton prescription. We find that gas dynamical friction consistently overestimates the strength of damping, especially for lower inclination systems, by at least an order of magnitude. For regions in the AGN disc where coplanar binary black hole formation by gas dissipation is efficient, we find that the simulated damping time-scales are especially short with $\tau _d < 10P_\mathrm{SMBH}$. We conclude that as the time-scales for inclination damping are shorter than the expected interaction time between isolated black holes, the vast majority of binaries formed from gas capture should form from components with negligible inclination to the AGN disc.

Large-scale-structure observables in general relativity validated at second order

Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:10 (2025) 105-105

Authors:

Antoine Villey, Yonadav Barry Ginat, Vincent Desjacques, Donghui Jeong, Fabian Schmidt

Abstract:

Abstract We present a second-order calculation of relativistic large-scale-structure observables in cosmological perturbation theory, specifically the “cosmic rulers and clock”, which are the building-blocks of any other large-scale-structure observable, including galaxy number counts, on large scales. We calculate the scalar rulers (longitudinal perturbation and magnification) and the cosmic clock to second order, using a fully non-linear covariant definition of the observables. We validate our formulæ on three non-trivial space-time metrics: two of them are null tests on metrics which are obtained by applying a gauge transformation to the background space-time, while the third is the “separate universe” curved background, for which we can also compute the observables exactly. We then illustrate the results by evaluating the second-order observables in a simplified symmetric setup. On large scales, they are suppressed over the linear contributions by ∼10 -4 , while they become comparable to the linear contributions on mildly non-linear scales. The results of this paper form a significant (and the most complicated) part of the relativistic galaxy number density at second order.