Limitations of gyrokinetics on transport time scales
Plasma Physics and Controlled Fusion 50:6 (2008)
Abstract:
We present a new recursive procedure to find a full f electrostatic gyrokinetic equation correct to first order in an expansion of gyroradius over magnetic field characteristic length. The procedure provides new insights into the limitations of the gyrokinetic quasineutrality equation. We find that the ion distribution function must be known at least to second order in gyroradius over characteristic length to calculate the long wavelength components of the electrostatic potential self-consistently. Moreover, using the example of a steady-state -pinch, we prove that the quasineutrality equation fails to provide the axisymmetric piece of the potential even with a distribution function correct to second order. We also show that second order accuracy is enough if a more convenient moment equation is used instead of the quasineutrality equation. These results indicate that the gyrokinetic quasineutrality equation is not the most effective procedure to find the electrostatic potential if the long wavelength components are to be retained in the analysis. © 2008 IOP Publishing Ltd.Cosmological physics with black holes (and possibly white dwarfs)
New Astronomy Reviews Elsevier 51:10-12 (2008) 884-890
Cosmological Physics with Black Holes (and Possibly White Dwarfs)
(2008)
Tidal disruption of stellar objects by hard supermassive black hole binaries
Astrophysical Journal 676:1 (2008) 54-69
Abstract:
Supermassive black hole binaries (SMBHBs) are expected by the hierarchical galaxy formation model in ACDM cosmology. There is some evidence in the literature for SMBHBs in active galactic nuclei, but there are few observational constraints on the evolution of SMBHBs in inactive galaxies and gas-poor mergers. On the theoretical front, it is unclear how long is needed for a SMBHB in a typical galaxy to coalesce. In this paper we investigate the tidal interaction between stars and binary black holes (BHs) and calculate the tidal disruption rates of stellar objects by the BH components of the binary. We derive the interaction cross sections between SMBHBs and stars from intensive numerical scattering experiments with particle number ∼ 107 and calculate the tidal disruption rates by both single and binary BHs for a sample of realistic galaxy models, taking into account the general relativistic effects and the loss-cone refilling because of two-body interaction. We estimate the frequency of tidal flares for different types of galaxies using the BH mass function in the literature. We find that because of the three-body slingshot effect, the tidal disruption rate in the SMBHB system is more than 1 order of magnitude smaller than that in a single super-massive black hole (SMBH) system. The difference is more significant in less massive galaxies and does not depend on detailed stellar dynamical processes. Our calculations suggest that comparisons of the calculated tidal disruption rates for both single and binary BHs and the surveys of X-ray or UV flares at galactic centers could tell us whether most SMBHs in nearby galaxies are single and whether the SMBHBs formed in gas-poor galaxy mergers coalesce rapidly. © 2008. The American Astronomical Society. All rights reserved.Structure and dynamics of galaxies with a low surface brightness disc. I. The stellar and ionised-gas kinematics
(2008)