Black Hole Disks in Galactic Nuclei

Phys. Rev. Lett. 121 (2018) 101101-101101

Authors:

Ákos Szölgyén, Bence Kocsis

Abstract:

Gravitational torques among objects orbiting a supermassive black hole drive the rapid reorientation of orbital planes in nuclear star clusters (NSCs), a process known as vector resonant relaxation. In this Letter, we determine the statistical equilibrium of systems with a distribution of masses, semimajor axes, and eccentricities. We average the interaction over the apsidal precession time and construct a Monte Carlo Markov chain method to sample the microcanonical ensemble of the NSC. We examine the case of NSCs formed by 16 episodes of star formation or globular cluster infall. We find that the massive stars and stellar mass black holes form a warped disk, while low mass stars resemble a spherical distribution with a possible net rotation. This explains the origin of the clockwise disk in the Galactic center and predicts a population of black holes (BHs) embedded within this structure. The rate of mergers among massive stars, tidal disruption events of massive stars by BHs, and BH-BH mergers are highly increased in such disks. The first two may explain the origin of the observed G1 and G2 clouds, the latter may be important for gravitational wave detections with LIGO and VIRGO. More generally, black holes are expected to settle in disks in all dense spherical stellar systems assembled by mergers of smaller systems including globular clusters.

Measurement Accuracy of Inspiraling Eccentric Neutron Star and Black Hole Binaries Using Gravitational Waves

(2018)

Authors:

László Gondán, Bence Kocsis

Revisiting relaxation in globular clusters

Monthly Notices of the Royal Astronomical Society Oxford University Press 481:2 (2018) 2041-2061

Authors:

C Hamilton, J-B Fouvry, James Binney, C Pichon

Abstract:

The classical theory of cluster relaxation is unsatisfactory because it involves the Coulomb logarithm. The Balescu–Lenard (BL) equation provides a rigorous alternative that has no ill-defined parameter. Moreover, the BL equation, unlike classical theory, includes the cluster’s self-gravity. A heuristic argument is given that indicates that relaxation does not occur predominantly through two-particle scattering and is enhanced by self-gravity. The BL equation is adapted to a spherical system and used to estimate the flux through the action space of isochrone clusters with different velocity anisotropies. A range of fairly different secular behaviours is found depending on the fraction of radial orbits. Classical theory is also used to compute the corresponding classical fluxes. The BL and classical fluxes are very different because (a) the classical theory materially underestimates the impact of large-scale collectively amplified fluctuations and (b) only the leading terms in an infinite sum for the BL flux are computed. A complete theory of cluster relaxation likely requires that the sum in the BL equation be decomposed into a sum over a finite number of small wavenumbers complemented by an integral over large wavenumbers analogous to classical theory.

Implementation of a Faraday rotation diagnostic at the OMEGA laser facility

High Power Laser Science and Engineering Cambridge University Press 6:2018 (2018) e49

Authors:

Alexander Rigby, Archie Bott, Thomas White, Petros Tzeferacos, DQ Lamb, DH Froula, Gianluca Gregori

Abstract:

Magnetic field measurements in turbulent plasmas are often difficult to perform. Here we show that for ⩾ kG magnetic fields, a time-resolved Faraday rotation measurement can be made at the OMEGA laser facility. This diagnostic has been implemented using the Thomson scattering probe beam and the resultant path-integrated magnetic field has been compared with that of proton radiography. Accurate measurement of magnetic fields is essential for satisfying the scientific goals of many current laser–plasma experiments.

Transport of high-energy charged particles through spatially-intermittent turbulent magnetic fields

(2018)

Authors:

LE Chen, AFA Bott, P Tzeferacos, A Rigby, A Bell, R Bingham, C Graziani, J Katz, M Koenig, CK Li, R Petrasso, H-S Park, JS Ross, D Ryu, TG White, B Reville, J Matthews, J Meinecke, F Miniati, EG Zweibel, S Sarkar, AA Schekochihin, DQ Lamb, DH Froula, G Gregori