Study of Gd-doped Bi2Te3 thin films: Molecular beam epitaxy growth and magnetic properties

Journal of Applied Physics 115 (2014) 2

Authors:

SE Harrison, LJ Collins-McIntyre, S Li, AA Baker, LR Shelford, Y Huo, A Pushp, SSP Parkin, JS Harris, E Arenholz, G van der Laan, T Hesjedal

Exchange bias of Ni nanoparticles embedded in an antiferromagnetic IrMn matrix.

Nanotechnology 24:45 (2013) 455702

Authors:

Balati Kuerbanjiang, Ulf Wiedwald, Felix Haering, Johannes Biskupek, Ute Kaiser, Paul Ziemann, Ulrich Herr

Abstract:

The magnetic properties of Ni nanoparticles (Ni-NPs) embedded in an antiferromagnetic IrMn matrix were investigated. The Ni-NPs of 8.4 nm mean diameter were synthesized by inert gas aggregation. In a second processing step, the Ni-NPs were in situ embedded in IrMn films or SiOx films under ultrahigh vacuum (UHV) conditions. Findings showed that Ni-NPs embedded in IrMn have an exchange bias field HEB = 821 Oe at 10 K, and 50 Oe at 300 K. The extracted value of the exchange energy density is 0.06 mJ m(-2) at 10 K, which is in good accordance with the results from multilayered thin film systems. The Ni-NPs embedded in SiOx did not show exchange bias. As expected for this particle size, they are superparamagnetic at T = 300 K. A direct comparison of the Ni-NPs embedded in IrMn or SiOx reveals an increase of the blocking temperature from 210 K to around 400 K. The coercivity of the Ni-NPs exchange coupled to the IrMn matrix at 10 K is 8 times larger than the value for Ni-NPs embedded in SiOx. We studied time-dependent remanent magnetization at different temperatures. The relaxation behavior is described by a magnetic viscosity model which reflects a rather flat distribution of energy barriers. Furthermore, we investigated the effects of different field cooling processes on the magnetic properties of the embedded Ni-NPs. Exchange bias values fit to model calculations which correlate the contribution of the antiferromagnetic IrMn matrix to its grain size.

Nonvolatile full adder based on a single multivalued Hall junction

SPIN World Scientific Publishing 3:2 (2013) 1350008

Authors:

SL Zhang, LJ Collins-McIntyre, JY Zhang, SG Wang, GH Yu, T Hesjedal

Abstract:

Multivalued logic devices are promising candidates for achieving high-density, low-power memory and logic functionalities. We present a ferromagnetic multilayer Hall junction device with four distinct resistance - and thus logic - states. The states can be encoded as a quaternary bit and decoded into two binary bits. We demonstrate a nonvolatile full adder that is based on a single Hall junction, the extraordinary Hall balance. The device can be easily integrated into complex logic circuits for logic-in-memory architectures.

Extraordinary hall balance

Scientific Reports 3 (2013)

Authors:

SL Zhang, Y Liu, LJ Collins-McIntyre, T Hesjedal, JY Zhang, SG Wang, GH Yu

Abstract:

Magnetoresistance (MR) effects are at the heart of modern information technology. However, future progress of giant and tunnelling MR based storage and logic devices is limited by the usable MR ratios of currently about 200% at room-temperature. Colossal MR structures, on the other hand, achieve their high MR ratios of up to 106% only at low temperatures and high magnetic fields. We introduce the extraordinary Hall balance (EHB) and demonstrate room-temperature MR ratios in excess of 31,000%. The new device concept exploits the extraordinary Hall effect in two separated ferromagnetic layers with perpendicular anisotropy in which the Hall voltages can be configured to be carefully balanced or tipped out of balance. Reprogrammable logic and memory is realised using a single EHB element. PACS numbers: 85.75.Nn,85.70.Kh,72.15.Gd,75.60.Ej.

Extraordinary hall balance

Scientific Reports Nature Publishing Group 3 (2013) 2087

Authors:

SL Zhang, Y Liu, LJ Collins-McIntyre, T Hesjedal, JY Zhang, SG Wang, GH Yu

Abstract:

Magnetoresistance (MR) effects are at the heart of modern information technology. However, future progress of giant and tunnelling MR based storage and logic devices is limited by the usable MR ratios of currently about 200% at room-temperature. Colossal MR structures, on the other hand, achieve their high MR ratios of up to 106% only at low temperatures and high magnetic fields. We introduce the extraordinary Hall balance (EHB) and demonstrate room-temperature MR ratios in excess of 31,000%. The new device concept exploits the extraordinary Hall effect in two separated ferromagnetic layers with perpendicular anisotropy in which the Hall voltages can be configured to be carefully balanced or tipped out of balance. Reprogrammable logic and memory is realised using a single EHB element.