Study of the structural, electric and magnetic properties of Mn-doped Bi 2 Te 3 single crystals

New Journal of Physics 15 (2013) 10

Authors:

MD Watson, LJ Collins-McIntyre, LR Shelford, AI Coldea, D Prabhakaran, SC Speller, T Mousavi, CRM Grovenor, Z Salman, SR Giblin, G van der Laan, T Hesjedal

Abstract:

Breaking the time reversal symmetry of a topological insulator, for example by the presence of magnetic ions, is a prerequisite for spin-based electronic applications in the future. In this regard Mn-doped Bi 2 Te 3 is a prototypical example that merits a systematic investigation of its magnetic properties. Unfortunately, Mn doping is challenging in many host materials—resulting in structural or chemical inhomogeneities affecting the magnetic properties. Here, we present a systematic study of the structural, magnetic and magnetotransport properties of Mn-doped Bi 2 Te 3 single crystals using complimentary experimental techniques. These materials exhibit a ferromagnetic phase that is very sensitive to the structural details, with T C varying between 9 and 13 K (bulk values) and a saturation moment that reaches4.4(5) μ B per Mn in the ordered phase. Muon spin rotation suggests that the magnetism is homogeneous throughout the sample. Furthermore, torque measurements in fields up to 33 T reveal an easy axis magnetic anisotropy perpendicular to the ab -plane. The electrical transport data show an anomaly around T C that is easily suppressed by an applied magnetic field, and also anisotropic behavior due to the spin-dependent scattering in relation to the alignment of the Mn magnetic moment. Hall measurements on different crystals established that these systems are n -doped with carrier concentrations of ∼ 0.5–3.0 × 10 20 cm −3 . X-ray magnetic circular dichroism (XMCD) at the Mn L 2,3 edge at 1.8 K reveals a large spin magnetic moment of4.3(3) μ B /Mn, and a small orbital magnetic moment of0.18(2) μ B /Mn. The results also indicate a ground state of mixed d 4 –d 5 –d 6 character of a localized electronic nature, similar to the diluted ferromagnetic semiconductor Ga 1− x Mn x As. XMCD measurements in a field of 6 T give a transition point at T ≈ 16 K, which is ascribed to short range magnetic order induced by the magnetic field. In the ferromagnetic state the easy direction of magnetization is along the c -axis, in agreement with bulk magnetization measurements. This could lead to gap opening at the Dirac point, providing a means to control the surface electric transport, which is of great importance for applications.

Transverse magnetic exchange springs in a DyFe2/YFe2 superlattice

Physical Review B: Condensed Matter and Materials Physics 86 (2012) 174420

Authors:

GBG Stenning, GJ Bowden, SA Gregory, PAJ de Groot, G van der Laan, LR Shelford, P Bencok, P Steadman, AN Dobrynin, T Hesjedal

Abstract:

Using a history-dependent method, it is possible to prepare magnetic superlattices, consisting of alternating hard and soft layers, in transverse exchange spring states. The procedure, which involves both physical rotation and magnetization routines, is illustrated using a (110)-oriented [DyFe2(60 Å)/YFe2(240 Å)]15 multilayer film. In small applied fields, it is shown that the magnetic response of a transverse magnetic exchange spring is reversible. However, in fields of up to 14 T, the Dy moments are pulled up out of their local in-plane [00¯1] minimum into an out-of-plane [100] (or equivalent [010]) axis. The reversible transverse exchange spring state is then lost. Thereafter, the magnetic loop is characterized by an irreversible out-of-plane magnetic exchange spring state.

Magnetic reversal in a YFe₂ dominated DyFe₂/YFe₂ multilayer film

Applied Physics Letters 101:7 (2012) 072412

Authors:

GBG Stenning, GJ Bowden, SA Gregory, J-ML Beaujour, PAJ de Groot, G van der Laan, LR Shelford, P Bencok, P Steadman, AN Dobrynin, T Hesjedal

Electronic structure of Fe and Co magnetic adatoms on Bi 2Te 3 surfaces

Physical Review B - Condensed Matter and Materials Physics 86:8 (2012)

Authors:

LR Shelford, T Hesjedal, L Collins-Mcintyre, SS Dhesi, F MacCherozzi, G Van Der Laan

Abstract:

Magnetic doping of topological insulators (TIs) is a prerequisite for their application as spin-based devices. Using x-ray magnetic circular dichroism (XMCD) we investigate the influence of an ultralow coverage (∼0.5% of a monolayer) of magnetic atoms on a TI substrate. For Fe and Co adatoms on Bi 2Te 3 at ∼1.5 K we find an orbital-to-spin magnetic moment ratio of ∼0.45. The magnetization curve of the Fe atoms recorded by XMCD is in quantitative agreement with a paramagnetic behavior with no indication of long-range magnetic order. The spectral shape of the XMCD indicates that the adatoms are weakly hybridized with the substrate and form narrowband states. The results show that the adatoms are not capable of breaking time-reversal symmetry. © 2012 American Physical Society.

Micromagnetic Investigation of the S-State Reconfigurable Logic Element

IEEE Transactions on Magnetics (2012)

Authors:

L Hu, T Hesjedal