Selective etching of epitaxial MnAs films on GaAs(001): Influence of structure and strain

Journal of Applied Physics 98:1 (2005)

Authors:

J Mohanty, Y Takagaki, T Hesjedal, L Däweritz, KH Ploog

Abstract:

Strain in epitaxial MnAs thin films on GaAs(001) substrates plays an important role in the coupled magnetostructural phase transition. As a result of strain, the phase transition from the ferromagnetic α phase to the paramagnetic Β phase proceeds over a wide temperature range and the coexisting phases form a periodic stripe array. Employing suitable wet chemical etchants, the two MnAs phases can be etched selectively. Perpendicular to the α-Β -stripe structure, the built-up strain relaxes in the course of the etching process by the formation of cracks. The combination of both strain relaxation mechanisms allows for the defined patterning of two-dimensional arrays of nanomagnets. Through micromagnetic investigations, it is possible to identify the location of α - and Β-MnAs which helps to clarify two major aspects of the etching process. First, it is possible to determine the etch rates of α - and Β-MnAs and follow the complex interplay of strain and phase composition during the etching process. Second, as strain reflects itself in a shifted phase-transition temperature, temperature-dependent micromagnetic studies allow to determine the strain environment of the cracks. © 2005 American Institute of Physics.

Nanofabrication for Surface-Acoustic-Wave Devices

Chapter in Nanotechnology focus, Nova Science Pub Inc (2005) 1

Authors:

T Hesjedal, W Seidel

Abstract:

This book presents the latest research in this frontier field.

Calculation of the magnetic stray field of a uniaxial magnetic domain

Journal of Applied Physics 97:7 (2005)

Authors:

R Engel-Herbert, T Hesjedal

Abstract:

We present an analytic solution for the magnetic field of a bar-shaped permanent magnet. Assuming a constant magnetization, we derive expressions for the stray field in three dimensions. The analytic solutions can be readily applied to field calculation problems for magnetic force microscopy simulations without the need for finite element methods. © 2005 American Institute of Physics.

Extending the magnetic order of MnAs films on GaAs to higher temperatures

Journal of Magnetism and Magnetic Materials 288 (2005) 173-177

Authors:

A Ney, T Hesjedal, L Däweritz, R Koch, KH Ploog

Abstract:

Manganese arsenide is a promising candidate for new spintronics applications since it is ferromagnetic at room temperature and can be grown with high epitaxial quality on semiconductors. However, the transition temperature of ∼40 °C is a limiting factor for device applications. Since the coupled magnetic and structural transition is of first order, it is in principle possible to shift the transition temperature by changing external parameters. Here we show that by either applying an external magnetic field or by growing the MnAs films on GaAs(1 1 1), i.e., by changing the epitaxial constraints which are equivalent to external pressure, ferromagnetic order can be stabilized well above the bulk-phase transition temperature. © 2004 Elsevier B.V. All rights reserved.

Epitaxial MnAs films studied by ferromagnetic and spin wave resonance

Local-Moment Ferromagnets 678 (2005) 97-109

Authors:

T Tolinski, K Lenz, J Lindner, K Baberschke, A Ney, T Hesjedal, C Pampuch, L Däweritz, R Koch, KH Ploog