Gate-Tunable Spin Hall Effect in an All-Light-Element Heterostructure: Graphene with Copper Oxide
American Chemical Society (ACS)
Magnetic skyrmion interactions in the micromagnetic framework
arxiv
Abstract:
Magnetic skyrmions are localized swirls of magnetization with a non-trivial topological winding number. This winding increases their robustness to superparamagnetism and gives rise to a myriad of novel dynamical properties, making them attractive as next-generation information carriers. Recently the equation of motion for a skyrmion was derived using the approach pioneered by Thiele, allowing for macroscopic skyrmion systems to be modeled efficiently. This powerful technique suffers from the prerequisite that one must have a priori knowledge of the functional form of the interaction between a skyrmion and all other magnetic structures in its environment. Here we attempt to alleviate this problem by providing a simple analytic expression which can generate arbitrary repulsive interaction potentials from the micromagnetic Hamiltonian. We also discuss a toy model of the radial profile of a skyrmion which is accurate for a wide range of material parameters.Magnetization dynamics in ordered spin structures revealed by diffractive and reflectometry ferromagnetic resonance
AIP Advances AIP Publishing
Abstract:
Synchrotron radiation based techniques provide unique insight into both the element and time resolved magnetization behavior in magnetic spin systems. Here, we highlight the power of two recent developments, utilizing x-ray scattering techniques to reveal the precessional magnetization dynamics of ordered spin structures in the GHz regime, both in diffraction and reflection configurations. Our newly developed diffraction and reflectometry ferromagnetic resonance (DFMR and RFMR) techniques provide novel ways to explore the dynamics of modern magnetic materials, thereby opening up new pathways for the development of spintronic devices. In this paper we provide an overview of these techniques, and discuss the new understanding they provide into in the magnetization dynamics in the chiral magnetic structure in Y-type hexaferrite and the depth dependence to the magnetization dynamics in a [CoFeB/MgO/Ta]4 multilayer.Measurements of $\barν_μ$ and $\barν_μ + ν_μ$ charged-current cross-sections without detected pions nor protons on water and hydrocarbon at mean antineutrino energy of 0.86 GeV
Prog Theor Exp Phys (2021)
Abstract:
We report measurements of the flux-integrated $\bar{\nu}_\mu$ and $\bar{\nu}_\mu+\nu_\mu$ charged-current cross-sections on water and hydrocarbon targets using the T2K anti-neutrino beam, with a mean neutrino energy of 0.86 GeV. The signal is defined as the (anti-)neutrino charged-current interaction with one induced $\mu^\pm$ and no detected charged pion nor proton. These measurements are performed using a new WAGASCI module recently added to the T2K setup in combination with the INGRID Proton module. The phase space of muons is restricted to the high-detection efficiency region, $p_{\mu}>400~{\rm MeV}/c$ and $\theta_{\mu}<30^{\circ}$, in the laboratory frame. Absence of pions and protons in the detectable phase space of "$p_{\pi}>200~{\rm MeV}/c$ and $\theta_{\pi}<70^{\circ}$", and "$p_{\rm p}>600~{\rm MeV}/c$ and $\theta_{\rm p}<70^{\circ}$" is required. In this paper, both of the $\bar{\nu}_\mu$ cross-sections and $\bar{\nu}_\mu+\nu_\mu$ cross-sections on water and hydrocarbon targets, and their ratios are provided by using D'Agostini unfolding method. The results of the integrated $\bar{\nu}_\mu$ cross-section measurements over this phase space are $\sigma_{\rm H_{2}O}\,=\,(1.082\pm0.068(\rm stat.)^{+0.145}_{-0.128}(\rm syst.)) \times 10^{-39}~{\rm cm^{2}/nucleon}$, $\sigma_{\rm CH}\,=\,(1.096\pm0.054(\rm stat.)^{+0.132}_{-0.117}(\rm syst.)) \times 10^{-39}~{\rm cm^{2}/nucleon}$, and $\sigma_{\rm H_{2}O}/\sigma_{\rm CH} = 0.987\pm0.078(\rm stat.)^{+0.093}_{-0.090}(\rm syst.)$. The $\bar{\nu}_\mu+\nu_\mu$ cross-section is $\sigma_{\rm H_{2}O} = (1.155\pm0.064(\rm stat.)^{+0.148}_{-0.129}(\rm syst.)) \times 10^{-39}~{\rm cm^{2}/nucleon}$, $\sigma_{\rm CH}\,=\,(1.159\pm0.049(\rm stat.)^{+0.129}_{-0.115}(\rm syst.)) \times 10^{-39}~{\rm cm^{2}/nucleon}$, and $\sigma_{\rm H_{2}O}/\sigma_{\rm CH}\,=\,0.996\pm0.069(\rm stat.)^{+0.083}_{-0.078}(\rm syst.)$.Proximity-induced odd-frequency superconductivity in a topological insulator
arxiv