Metal-organic framework glasses with permanent accessible porosity.
Nature communications 9:1 (2018) 5042
Abstract:
To date, only several microporous, and even fewer nanoporous, glasses have been produced, always via post synthesis acid treatment of phase separated dense materials, e.g. Vycor glass. In contrast, high internal surface areas are readily achieved in crystalline materials, such as metal-organic frameworks (MOFs). It has recently been discovered that a new family of melt quenched glasses can be produced from MOFs, though they have thus far lacked the accessible and intrinsic porosity of their crystalline precursors. Here, we report the first glasses that are permanently and reversibly porous toward incoming gases, without post-synthetic treatment. We characterize the structure of these glasses using a range of experimental techniques, and demonstrate pores in the range of 4 - 8 Å. The discovery of MOF glasses with permanent accessible porosity reveals a new category of porous glass materials that are elevated beyond conventional inorganic and organic porous glasses by their diversity and tunability.Tuning of the Ru$^{\mathbf{4+}}$ ground-state orbital population in the $\mathbf{4d^4}$ Mott insulator Ca$_2$RuO$_4$ achieved by La doping
(2018)
Publisher Correction: Liquid phase blending of metal-organic frameworks.
Nature communications 9:1 (2018) 4402
Abstract:
The original version of this Article contained an error in Figure 1b, where the blue '(ZIF-4-Zn)0.5 (ZIF-62)0.5 blend' data curve was omitted from the enthalpy response plot. This has now been corrected in both the PDF and HTML versions of the Article.Probing the intrinsic and extrinsic origins of piezoelectricity in lead zirconate titanate single crystals
Journal of Applied Crystallography International Union of Crystallography 51:5 (2018) 1396-1403
Abstract:
The physical origin of the piezoelectric effect has been the focus of much research work. While it is commonly accepted that the origins of piezoelectricity may be intrinsic (related to the change of lattice parameters) and extrinsic (related to the movement of domain walls), their separation is often a challenging experimental task. Here in situ high-resolution synchrotron X-ray diffraction has been combined with a new data analysis technique to characterize the change of the lattice parameters and domain microstructure of a PbZr1−xTixO3 (x = 0.45) crystal under an external electric field. It is shown how `effective piezoelectric coefficients' evolve upon the transition from purely `intrinsic' effects to `extrinsic' ones due to domain-wall motion. This technique and corresponding data analysis can be applied to broader classes of materials and provide important insights into the microscopic origin of their physical properties.Stochastic Polarization Instability in PbTiO_{3}.
Physical review letters 121:13 (2018) 137602