Evidence for $J_{\rm eff} = 0$ ground state and defect-induced spin glass behaviour in the pyrochlore osmate Y$_{2}$Os$_{2}$O$_{7}$
(2018)
Persistence of antiferromagnetic order upon La substitution in the 4d4 Mott insulator Ca2RuO4
Physical Review B American Physical Society 98:1 (2018)
Abstract:
The chemical and magnetic structures of the series of compounds Ca2−xLaxRuO4 [x = 0, 0.05(1), 0.07(1), 0.12(1)] have been investigated using neutron diffraction and resonant elastic x-ray scattering. Upon La doping, the low-temperature S-P bca space group of the parent compound is retained in all insulating samples [x 0.07(1)], but with significant changes to the atomic positions within the unit cell. These changes can be characterized in terms of the local RuO6 octahedral coordination: with increasing doping, the structure, crudely speaking, evolves from an orthorhombic unit cell with compressed octahedra to a quasitetragonal unit cell with elongated ones. The magnetic structure on the other hand, is found to be robust, with the basic k = (0,0,0), b-axis antiferromagnetic order of the parent compound preserved below the critical La doping concentration of x ≈ 0.11. The only effects of La doping on the magnetic structure are to suppress the A-centred mode, favoring the B mode instead, and to reduce the Néel temperature somewhat. Our results are discussed with reference to previous experimental reports on the effects of cation substitution on the d4 Mott insulator Ca2RuO4, as well as with regard to theoretical studies on the evolution of its electronic and magnetic structure. In particular, our results rule out the presence of a proposed ferromagnetic phase, and suggest that the structural effects associated with La substitution play an important role in the physics of the system.Local structures and temperature-driven polarization rotation in Zr-rich PbZr1-xTixO3
Applied Physics Letters AIP Publishing 113 (2018) 012901
Abstract:
PbZr1-xTixO3, which has abundant structural variations in the corresponding physical properties, has been used in a large variety of applications. To understand the effect of the structure on its high-performance piezoelectric properties, its local and average structures are studied. Total scattering data have been obtained from high-energy synchrotron powder diffraction experiments at 20 K and 300 K. Using the reverse Monte Carlo method, information on cation displacements has been extracted from X-ray Pair Distribution Function data. This suggests that the local disorder of the B cations is mainly driven by thermal motion, while the local disorder of Pb is most likely caused by more complex factors, such as displacive disorder. Both rhombohedral and monoclinic local polarizations are observed in Zr-rich PZT, whose directions depend on temperature.Thermodynamic features and enthalpy relaxation in a metal-organic framework glass.
Physical chemistry chemical physics : PCCP 20:27 (2018) 18291-18296
Abstract:
In this work, we explore the thermodynamic evolution in a melt-quenched metal-organic framework glass, formed from ZIF-62 upon heating to the melting point (Tm), and subsequent enthalpy relaxation. The temperature dependence of the difference in Gibbs free energy between the liquid and crystal states of ZIF-62 in the temperature range from the glass transition temperature (Tg) to Tm is found to be weaker than those of other types of glasses, e.g., metallic glasses. Additionally, we find that the stretched exponent of the enthalpy relaxation function in the glass varies significantly (β = 0.44-0.76) upon changing the extent of sub-Tg annealing, compared to metallic and oxide glasses with similar Tgs, suggesting a high degree of structural heterogeneity. Pair distribution function results suggest no significant structural changes during the sub-Tg relaxation in ZIF-62 glass.Coupling of magnetic order and charge transport in the candidate Dirac semimetal EuCd2As2
Physical review B: Condensed matter and materials physics American Physical Society 97:21 (2018) 214422