Confusion over the description of the quartz structure yet again

Journal of Applied Crystallography International Union of Crystallography 51 (2018) 915-918

Abstract:

In a recent paper [Huang, Gog, Kim, Kasman, Said, Casa, Wieczorek, Hönnicke and Assoufid (2018). J. Appl. Cryst. 51, 140–147], a description of the structure of quartz was given that is incorrect. There is a long history of such errors in publications describing the quartz structure. This was fully and correctly discussed in 1978 [Donnay and Le Page (1978). Acta Cryst. A34, 584–594], and yet these errors still persist. In the present paper the description by Huang et al. is corrected and the seminal work of Donnay and Le Page revisited.

Spin dynamics and exchange interactions in CuO measured by neutron scattering

Physical Review B American Physical Society 97:14 (2018) 144401

Authors:

Henrik Jacobsen, SM Gaw, Andrew J Princep, E Hamilton, S Tóth, RA Ewings, M Enderle, EM Hétroy Wheeler, Dharmalingam Prabhakaran, Andrew Boothroyd

Abstract:

The magnetic properties of CuO encompass several contemporary themes in condensed matter physics, including quantum magnetism, magnetic frustration, magnetically-induced ferroelectricity and orbital currents. Here we report polarized and unpolarized neutron inelastic scattering measurements which provide a comprehensive map of the cooperative spin dynamics in the low temperature antiferromagnetic (AFM) phase of CuO throughout much of the Brillouin zone. At high energies $(E \gtrsim 100\,meV)$ the spectrum displays continuum features consistent with the des Cloizeax--Pearson dispersion for an ideal $S=\frac{1}{2}$ Heisenberg AFM chain. At lower energies the spectrum becomes more three-dimensional, and we find that a linear spin-wave model for a Heisenberg AFM provides a very good description of the data, allowing for an accurate determination of the relevant exchange constants in an effective spin Hamiltonian for CuO. In the high temperature helicoidal phase, there are features in the measured low-energy spectrum that we could not reproduce with a spin-only model. We discuss how these might be associated with the magnetically-induced multiferroic behavior observed in this phase.

Neutron and X-ray total scattering study of hydrogen disorder in fully hydrated hydrogrossular, Ca3Al2(O4H4)3

Physics and Chemistry of Minerals Springer Nature 45:4 (2018) 333-342

Authors:

David A Keen, Dean S Keeble, Thomas D Bennett

Coupling of magnetic order and charge transport in the candidate Dirac semimetal EuCd$_2$As$_2$

(2018)

Authors:

MC Rahn, J-R Soh, S Francoual, LSI Veiga, J Strempfer, J Mardegan, DY Yan, YF Guo, YG Shi, AT Boothroyd

Static and fluctuating magnetic moments in the ferroelectric metal LiOsO3

JPS Conference Proceedings Physical Society of Japan 日本物理学会 21:011013 (2018) 1-6

Authors:

Franziska Kirschner, Franz Lang, FL Pratt, T Lancaster, Y Shi, Y Guo, Andrew Boothroyd, Stephen Blundell

Abstract:

LiOsO3 is the first example of a new class of material called a ferroelectric metal. We performed zero-field and longitudinal-field μSR, along with a combination of electronic structure and dipole field calculations, to determine the magneticground state of LiOsO3. We find that the sample contains both static Li nuclear moments and dynamic Os electronic moments. Below ≈0.7 K, the fluctuations of the Os moments slow down, though remain dynamic down to 0.08 K. We expect this could result in a frozen-out, disordered ground state at even lower temperatures.