Commensal Transient Searches with MeerKAT in Gamma-Ray Burst and Supernova Fields

The Astrophysical Journal American Astronomical Society 988:2 (2025) 227

Authors:

SI Chastain, AJ van der Horst, A Horesh, A Rowlinson, A Andersson, R Diretse, M Vaccari, RP Fender, PA Woudt

Abstract:

The sensitivity and field of view of the MeerKAT radio telescope provide excellent opportunities for commensal transient searches. We carry out a commensal transient search in supernova and short gamma-ray burst fields using methodologies established by S. I. Chastain et al. We search for transients in MeerKAT L-band images with integration times of 30 minutes, finding 13 variable sources. We compare these sources to the VLASS and RACS survey data, and examine possible explanations for the variability. Additionally, for one of these sources we examine archival Chandra ACIS data. We find that 12 of these sources are consistent with variability due to interstellar scintillation. The remaining source could possibly have some intrinsic variability. We also split the MeerKAT L band into upper and lower halves, and search for transients in images with an integration time of 8 s. We find a source with a duration of 8–16 s that is highly polarized at the lowest frequencies. This source is spatially coincident with a star detected by the Transiting Exoplanet Survey Satellite. We conclude that this source may be consistent with a stellar flare. Finally, we calculate accurate upper and lower limits on the transient rate using transient simulations.

He Awa Whiria: The Tidal Streams of Interstellar Objects

The Astrophysical Journal American Astronomical Society 988:1 (2025) 121

Authors:

John C Forbes, Michele T Bannister, Chris Lintott, Angus Forrest, Simon Portegies Zwart, Rosemary C Dorsey, Leah Albrow, Matthew J Hopkins

Abstract:

Upcoming surveys are likely to discover a new sample of interstellar objects (ISOs) within the solar system, but questions remain about the origin and distribution of this population within the Galaxy. ISOs are ejected from their host systems with a range of velocities, spreading out into tidal streams—analogous to the stellar streams routinely observed from the disruption of star clusters and dwarf galaxies. We create a simulation of ISO streams orbiting in the Galaxy, deriving a simple model for their density distribution over time. We then construct a population model to predict the properties of the streams in which the Sun is currently embedded. We find that the number of streams encountered by the Sun is quite large, ∼106 or more. However, the wide range of stream properties means that for reasonable future samples of ISOs observed in the solar system, we may see ISOs from the same star (“siblings”), and we are likely to see ISOs from the same star cluster (“cousins”). We also find that ISOs are typically not traceable to their parent star, though this may be possible for ISO siblings. Any ISOs observed with a common origin will come from younger, dynamically colder streams.

Galaxy Zoo CEERS: Bar Fractions Up to z ∼ 4.0

The Astrophysical Journal American Astronomical Society 987:1 (2025) 74

Authors:

Tobias Géron, RJ Smethurst, Hugh Dickinson, LF Fortson, Izzy L Garland, Sandor Kruk, Chris Lintott, Jason Shingirai Makechemu, Kameswara Bharadwaj Mantha, Karen L Masters, David O’Ryan, Hayley Roberts, BD Simmons, Mike Walmsley, Antonello Calabrò, Rimpei Chiba, Luca Costantin, Maria R Drout, Francesca Fragkoudi, Yuchen Guo, BW Holwerda, Shardha Jogee, Anton M Koekemoer, Ray A Lucas

Abstract:

We study the evolution of the bar fraction in disk galaxies between 0.5 < z < 4.0 using multiband colored images from JWST Cosmic Evolution Early Release Science Survey (CEERS). These images were classified by citizen scientists in a new phase of the Galaxy Zoo (GZ) project called GZ CEERS. Citizen scientists were asked whether a strong or weak bar was visible in the host galaxy. After considering multiple corrections for observational biases, we find that the bar fraction decreases with redshift in our volume-limited sample (n = 398); from 25−4+6 % at 0.5 < z < 1.0 to 3−1+6 % at 3.0 < z < 4.0. However, we argue it is appropriate to interpret these fractions as lower limits. Disentangling real changes in the bar fraction from detection biases remains challenging. Nevertheless, we find a significant number of bars up to z = 2.5. This implies that disks are dynamically cool or baryon dominated, enabling them to host bars. This also suggests that bar-driven secular evolution likely plays an important role at higher redshifts. When we distinguish between strong and weak bars, we find that the weak bar fraction decreases with increasing redshift. In contrast, the strong bar fraction is constant between 0.5 < z < 2.5. This implies that the strong bars found in this work are robust long-lived structures, unless the rate of bar destruction is similar to the rate of bar formation. Finally, our results are consistent with disk instabilities being the dominant mode of bar formation at lower redshifts, while bar formation through interactions and mergers is more common at higher redshifts.

Accelerating Long-period Exoplanet Discovery by Combining Deep Learning and Citizen Science

Astronomical Journal American Astronomical Society 170:1 (2025) 39

Authors:

Shreshth A Malik, Nora L Eisner, Ian R Mason, Sofia Platymesi, Suzanne Aigrain, Stephen J Roberts, Yarin Gal, Chris J Lintott

Abstract:

Automated planetary transit detection has become vital to identify and prioritize candidates for expert analysis and verification given the scale of modern telescopic surveys. Current methods for short-period exoplanet detection work effectively due to periodicity in the transit signals, but a robust approach for detecting single-transit events is lacking. However, volunteer-labeled transits collected by the Planet Hunters TESS (PHT) project now provide an unprecedented opportunity to investigate a data-driven approach to long-period exoplanet detection. In this work, we train a 1D convolutional neural network to classify planetary transits using PHT volunteer scores as training data. We find that this model recovers planet candidates (TESS objects of interest; TOIs) at a precision and recall rate exceeding those of volunteers, with a 20% improvement in the area under the precision-recall curve and 10% more TOIs identified in the top 500 predictions on average per sector. Importantly, the model also recovers almost all planet candidates found by volunteers but missed by current automated methods (PHT community TOIs). Finally we retrospectively utilise the model to simulate live deployment in PHT to reprioritize candidates for analysis. We also find that multiple promising planet candidates, originally missed by PHT, would have been found using our approach, showing promise for upcoming real-world deployment.

Strong gravitational lenses from the Vera C. Rubin Observatory

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences The Royal Society 383:2295 (2025) 20240117

Authors:

Anowar J Shajib, Graham P Smith, Simon Birrer, Aprajita Verma, Nikki Arendse, Thomas Collett, Tansu Daylan, Stephen Serjeant

Abstract:

Like many areas of astrophysics and cosmology, the Vera C. Rubin Observatory will be transformational for almost all the applications of strong lensing, thanks to the dramatic increase in the number of known strong lenses by two orders of magnitude or more and the readily available time-domain data for the lenses with transient sources. In this article, we provide an overview of the forecasted number of discovered lenses of different types and describe the primary science cases these large lens samples will enable. We provide an updated forecast on the joint constraint for the dark energy equation-of-state parameters, w0 and wa, from combining all strong-lensing probes of dark energy. We update the previous forecast from the Rubin Observatory Dark Energy Science Collaboration’s Science Review Document by adding two new crucial strong-lensing samples: lensed type Ia supernovae and single-deflector lenses with measured stellar kinematics. Finally, we describe the current and near-future activities and collaborative efforts within the strong-lensing community in preparation for the arrival of the first real dataset from Rubin in 2026. This article is part of the Theo Murphy meeting issue ‘Multi-messenger gravitational lensing (Part 2)’.