Deep learning for automatic segmentation of the nuclear envelope in electron microscopy data, trained with volunteer segmentations

Traffic Wiley 22:7 (2021) 240-253

Authors:

Helen Spiers, Harry Songhurst, Luke Nightingale, Joost de Folter, Roger Hutchings, Christopher J Peddie, Anne Weston, Amy Strange, Steve Hindmarsh, Christopher Lintott, Lucy M Collinson, Martin L Jones

Abstract:

Advancements in volume electron microscopy mean it is now possible to generate thousands of serial images at nanometre resolution overnight, yet the gold standard approach for data analysis remains manual segmentation by an expert microscopist, resulting in a critical research bottleneck. Although some machine learning approaches exist in this domain, we remain far from realizing the aspiration of a highly accurate, yet generic, automated analysis approach, with a major obstacle being lack of sufficient high-quality ground-truth data. To address this, we developed a novel citizen science project, Etch a Cell, to enable volunteers to manually segment the nuclear envelope (NE) of HeLa cells imaged with serial blockface scanning electron microscopy. We present our approach for aggregating multiple volunteer annotations to generate a high-quality consensus segmentation and demonstrate that data produced exclusively by volunteers can be used to train a highly accurate machine learning algorithm for automatic segmentation of the NE, which we share here, in addition to our archived benchmark data.

An old stellar population or diffuse nebular continuum emission discovered in Green Pea galaxies

Astrophysical Journal Letters American Astronomical Society 912:2 (2021) L22

Authors:

Leonardo Clarke, Claudia Scarlata, Vihang Mehta, William C Keel, Carolin Cardamone, Matthew Hayes, Nico Adams, Hugh Dickinson, Lucy Fortson, Sandor Kruk, Chris Lintott, Brooke Simmons

Abstract:

We use new Hubble Space Telescope (HST) images of nine Green Pea galaxies (GPGs) to study their resolved structure and color. The choice of filters, F555W and F850LP, together with the redshift of the galaxies (z ~ 0.25), minimizes the contribution of the nebular [O iii] and Hα emission lines to the broadband images. While these galaxies are typically very blue in color, our analysis reveals that it is only the dominant stellar clusters that are blue. Each GPG does clearly show the presence of at least one bright and compact star-forming region, but these are invariably superimposed on a more extended and lower surface brightness emission. Moreover, the colors of the star-forming regions are on average bluer than those of the diffuse emission, reaching up to 0.6 magnitudes bluer. Assuming that the diffuse and compact components have constant and single-burst star formation histories, respectively, the observed colors imply that the diffuse components (possibly the host galaxy of the star formation episode) have, on average, old stellar ages (>1 Gyr), while the star clusters are younger than 500 Myr. While a redder stellar component is perhaps the most plausible explanation for these results, the limitations of our current data set lead us to examine possible alternative mechanisms, particularly recombination emission processes, which are unusually prominent in systems with such strong line emission. With the available data, however, it is not possible to distinguish between these two interpretations. A substantial presence of old stars would indicate that the mechanisms allowing large escape fractions in these local galaxies may be different from those at play during the reionization epoch.

The lens SW05 J143454.4+522850: a fossil group at redshift 0.6?

ArXiv 2104.03324 (2021)

Authors:

Philipp Denzel, Onur Çatmabacak, Jonathan P Coles, Claude Cornen, Robert Feldmann, Ignacio Ferreras, Xanthe Gwyn Palmer, Rafael Küng, Dominik Leier, Prasenjit Saha, Aprajita Verma

Structured variational inference for simulating populations of radio galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 503:3 (2021) 3351-3370

Authors:

David J Bastien, Anna MM Scaife, Hongming Tang, Micah Bowles, Fiona Porter

Planet Hunters TESS II: Findings from the first two years of TESS

Monthly Notices of the Royal Astronomical Society 501:4 (2021) 4669-4690

Authors:

Nl Eisner, O Barragán, C Lintott, S Aigrain, B Nicholson, Ts Boyajian, S Howell, C Johnston, B Lakeland, G Miller, A McMaster, H Parviainen, Ej Safron, Me Schwamb, L Trouille, S Vaughan, N Zicher, C Allen, S Allen, M Bouslog, C Johnson, Mn Simon, Z Wolfenbarger, Eml Baeten, Dm Bundy, T Hoffman

Abstract:

© 2021 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. We present the results from the first two years of the Planet Hunters TESS (PHT) citizen science project, which identifies planet candidates in the TESS (Transiting Exoplanet Survey Satellite) data by engaging members of the general public. Over 22 000 citizen scientists from around the world visually inspected the first 26 sectors of TESS data in order to help identify transit-like signals. We use a clustering algorithm to combine these classifications into a ranked list of events for each sector, the top 500 of which are then visually vetted by the science team. We assess the detection efficiency of this methodology by comparing our results to the list of TESS Objects of Interest (TOIs) and show that we recover 85 per cent of the TOIs with radii greater than 4 R and 51 per cent of those with radii between 3 and 4 R. Additionally, we present our 90 most promising planet candidates that had not previously been identified by other teams, 73 of which exhibit only a single-transit event in the TESS light curve, and outline our efforts to follow these candidates up using ground-based observatories. Finally, we present noteworthy stellar systems that were identified through the Planet Hunters TESS project.