The First Habitable-zone Earth-sized Planet from TESS. I. Validation of the TOI-700 System

The American Astronomical Society. All rights reserved. The Astronomical Journal, Volume 160, Number 3

Authors:

Emily A. Gilbert, Thomas Barclay, Joshua E. Schlieder, Elisa V. Quintana, Benjamin J. Hord, Veselin B. Kostov, Eric D. Lopez, Jason F. Rowe, Kelsey Hoffman, Lucianne M. Walkowicz, Michele L. Silverstein, Joseph E. Rodriguez, Andrew Vanderburg, Gabrielle Suissa, Vladimir S. Airapetian, Matthew S. Clement, Sean N. Raymond, Andrew W. Mann, Ethan Kruse, Jack J. Lissauer, Knicole D. Colón, Ravi kumar Kopparapu, Laura Kreidberg, Sebastian Zieba, Karen A. Collins, Samuel N. Quinn, Steve B. Howell, Carl Ziegler, Eliot Halley Vrijmoet, Fred C. Adams, Giada N. Arney, Patricia T. Boyd, Jonathan Brande, Christopher J. Burke, Luca Cacciapuoti, Quadry Chance, Jessie L. Christiansen, Giovanni Covone, Tansu Daylan, Danielle Dineen, Courtney D. Dressing, Zahra Essack, Thomas J. Fauchez, Brianna Galgano, Alex R. Howe, Lisa Kaltenegger, Stephen R. Kane, Christopher Lam, Eve J. Lee, Nikole K. Lewis, Sarah E. Logsdon, Avi M. Mandell, Teresa Monsue, Fergal Mullally, Susan E. Mullally, Rishi Paudel, Daria Pidhorodetska, Peter Plavchan, Naylynn Tañón Reyes, Stephen A. Rinehart, Bárbara Rojas-Ayala, Jeffrey C. Smith, Keivan G. Stassun, Peter Tenenbaum, Laura D. Vega, Geronimo L. Villanueva, Eric T. Wolf, Allison Youngblood, George R. Ricker, Roland K. Vanderspek, David W. Latham, Sara Seager, Joshua N. Winn, Jon M. Jenkins, Gáspár Á. Bakos, César Briceño, David R. Ciardi, Ryan Cloutier, Dennis M. Conti, Andrew Couperus, Mario Di Sora, Nora L. Eisner, Mark E. Everett, Tianjun Gan, Joel D. Hartman, Todd Henry, Giovanni Isopi, Wei-Chun Jao, Eric L. N. Jensen, Nicholas Law, Franco Mallia, Rachel A. Matson, Benjamin J. Shappee, Mackenna Lee Wood, Jennifer G. Winters

Abstract:

We present the discovery and validation of a three-planet system orbiting the nearby (31.1 pc) M2 dwarf star TOI-700 (TIC 150428135). TOI-700 lies in the TESS continuous viewing zone in the Southern Ecliptic Hemisphere; observations spanning 11 sectors reveal three planets with radii ranging from 1 R⊕ to 2.6 R⊕ and orbital periods ranging from 9.98 to 37.43 days. Ground-based follow-up combined with diagnostic vetting and validation tests enables us to rule out common astrophysical false-positive scenarios and validate the system of planets. The outermost planet, TOI-700 d, has a radius of 1.19 ± 0.11 R⊕ and resides within a conservative estimate of the host star's habitable zone, where it receives a flux from its star that is approximately 86% of Earth's insolation. In contrast to some other low-mass stars that host Earth-sized planets in their habitable zones, TOI-700 exhibits low levels of stellar activity, presenting a valuable opportunity to study potentially rocky planets over a wide range of conditions affecting atmospheric escape. While atmospheric characterization of TOI-700 d with the James Webb Space Telescope (JWST) will be challenging, the larger sub-Neptune, TOI-700 c (R = 2.63 R⊕), will be an excellent target for JWST and future space-based observatories. TESS is scheduled to once again observe the Southern Hemisphere, and it will monitor TOI-700 for an additional 11 sectors in its extended mission. These observations should allow further constraints on the known planet parameters and searches for additional planets and transit timing variations in the system.

The First Habitable-zone Earth-sized Planet from TESS. I. Validation of the TOI-700 System

The Astronomical Journal American Astronomical Society 160:3 (2020) 116

Authors:

Emily A Gilbert, Thomas Barclay, Joshua E Schlieder, Elisa V Quintana, Benjamin J Hord, Veselin B Kostov, Eric D Lopez, Jason F Rowe, Kelsey Hoffman, Lucianne M Walkowicz, Michele L Silverstein, Joseph E Rodriguez, Andrew Vanderburg, Gabrielle Suissa, Vladimir S Airapetian, Matthew S Clement, Sean N Raymond, Andrew W Mann, Ethan Kruse, Jack J Lissauer, Knicole D Colón, Ravi kumar Kopparapu, Laura Kreidberg, Sebastian Zieba, Karen A Collins, Samuel N Quinn, Steve B Howell, Carl Ziegler, Eliot Halley Vrijmoet, Fred C Adams, Giada N Arney, Patricia T Boyd, Jonathan Brande, Christopher J Burke, Luca Cacciapuoti, Quadry Chance, Jessie L Christiansen, Giovanni Covone, Tansu Daylan, Danielle Dineen, Courtney D Dressing, Zahra Essack, Thomas J Fauchez, Brianna Galgano, Alex R Howe, Lisa Kaltenegger, Stephen R Kane, Christopher Lam, Eve J Lee, Nikole K Lewis, Sarah E Logsdon, Avi M Mandell, Teresa Monsue, Fergal Mullally, Susan E Mullally, Rishi R Paudel, Daria Pidhorodetska, Peter Plavchan, Naylynn Tañón Reyes, Stephen A Rinehart, Bárbara Rojas-Ayala, Jeffrey C Smith, Keivan G Stassun, Peter Tenenbaum, Laura D Vega, Geronimo L Villanueva, Eric T Wolf, Allison Youngblood, George R Ricker, Roland K Vanderspek, David W Latham, Sara Seager, Joshua N Winn, Jon M Jenkins, Gáspár Å Bakos, César Briceño, David R Ciardi, Ryan Cloutier, Dennis M Conti, Andrew Couperus, Mario Di Sora, Nora L Eisner, Mark E Everett, Tianjun Gan, Joel D Hartman, Todd Henry, Giovanni Isopi, Wei-Chun Jao, Eric LN Jensen, Nicholas Law, Franco Mallia, Rachel A Matson, Benjamin J Shappee, Mackennae Le Wood, Jennifer G Winters

The visual complexity of coronal mass ejections follows the solar cycle

Space Weather American Geophysical Union 18:10 (2020)

Authors:

Sr Jones, Cj Scott, La Barnard, R Highfield, Cj Lintott, E Baeten

Abstract:

The Heliospheric Imagers on board National Aeronautics and Space Administration (NASA)'s twin STEREO spacecraft show that coronal mass ejections (CMEs) can be visually complex structures. To explore this complexity, we created a citizen science project with the U.K. Science Museum, in which participants were shown pairs of CME images and asked to decide which image in each pair appeared the most “complicated.” A Bradley‐Terry model was then applied to these data to rank the CMEs by their “complicatedness,” or “visual complexity.” This complexity ranking revealed that the annual average visual complexity values follow the solar activity cycle, with a higher level of complexity being observed at the peak of the cycle. The average complexity of CMEs observed by STEREO‐A was also found to be significantly higher than those observed by STEREO‐B. Visual complexity was found to be associated with CME size and brightness, but our results suggest that complexity may be influenced by the scale‐sizes of structure in the CMEs.

Interactions among intermediate redshift galaxies

Astronomy & Astrophysics EDP Sciences 639 (2020) a30

Authors:

Persis Misquitta, Micah Bowles, Andreas Eckart, Madeleine Yttergren, Gerold Busch, Monica Valencia-S., Nastaran Fazeli

TOI-1338: TESS' First Transiting Circumbinary Planet

ASTRONOMICAL JOURNAL 159:6 (2020) ARTN 253

Authors:

Veselin B Kostov, Jerome A Orosz, Adina D Feinstein, William F Welsh, Wolf Cukier, Nader Haghighipour, Billy Quarles, David V Martin, Benjamin T Montet, Guillermo Torres, Amaury HMJ Triaud, Thomas Barclay, Patricia Boyd, Cesar Briceno, Andrew Collier Cameron, Alexandre CM Correia, Emily A Gilbert, Samuel Gill, Michael Gillon, Jacob Haqq-Misra, Coel Hellier, Courtney Dressing, Daniel C Fabrycky, Gabor Furesz, Jon Jenkins, Stephen R Kane, Ravi Kopparapu, Vedad Kunovac Hodzic, David W Latham, Nicholas Law, Alan M Levine, Gongjie Li, Chris Lintott, Jack J Lissauer, Andrew W Mann, Tsevi Mazeh, Rosemary Mardling, Pierre FL Maxted, Nora Eisner, Francesco Pepe, Joshua Pepper, Don Pollacco, Samuel N Quinn, Elisa V Quintana, Jason F Rowe, George Ricker, Mark E Rose, S Seager, Alexandre Santerne, Damien Segransan

Abstract:

© 2020. The American Astronomical Society. All rights reserved. We report the detection of the first circumbinary planet (CBP) found by Transiting Exoplanet Survey Satellite (TESS). The target, a known eclipsing binary, was observed in sectors 1 through 12 at 30 minute cadence and in sectors 4 through 12 at 2 minute cadence. It consists of two stars with masses of 1.1 M o˙ and 0.3 M o˙ on a slightly eccentric (0.16), 14.6 day orbit, producing prominent primary eclipses and shallow secondary eclipses. The planet has a radius of ∼6.9 R ⊕ and was observed to make three transits across the primary star of roughly equal depths (∼0.2%) but different durations-a common signature of transiting CBPs. Its orbit is nearly circular (e ≈ 0.09) with an orbital period of 95.2 days. The orbital planes of the binary and the planet are aligned to within ∼1°. To obtain a complete solution for the system, we combined the TESS photometry with existing ground-based radial-velocity observations in a numerical photometric-dynamical model. The system demonstrates the discovery potential of TESS for CBPs and provides further understanding of the formation and evolution of planets orbiting close binary stars.