The effect of minor and major mergers on the evolution of low-excitation radio galaxies

Astrophysical Journal American Astronomical Society 878:2 (2019) 88

Authors:

YA Gordon, KA Pimbblet, S Kaviraj, Owers, CP O'Dea, Mike Walmsley, Baum, JP Crossett, A Fraser-Mckelvie, Christopher Lintott, JCS Pierce

Abstract:

We use deep, μ r ≲ 28 mag arcsec−2, r-band imaging from the Dark Energy Camera Legacy Survey to search for past, or ongoing, merger activity in a sample of 282 low-excitation radio galaxies (LERGs) at z < 0.07. Our principal aim is to assess the the role of mergers in the evolution of LERGs. Exploiting the imaging depth, we classify tidal remnants around galaxies as both minor and major morphological disturbances for our LERG sample and 1622 control galaxies matched in redshift, stellar mass, and environment. In groups and in the field, the LERG minor merger fraction is consistent with the control population. In galaxy clusters, 8.8 ± 2.9% of LERGs show evidence of recent minor mergers in contrast to 23.0 ± 2.0% of controls. This ~4σ deficit of minor mergers in cluster LERGs suggests these events may inhibit this type of nuclear activity for galaxies within the cluster environment. We observe a >4σ excess of major mergers in the LERGs with M * ≲ 1011 M⊙, with 10 ± 1.5% of these active galactic nuclei involved in such large-scale interactions compared to 3.2 ± 0.4% of control galaxies. This excess of major mergers in LERGs decreases with increasing stellar mass, vanishing by M * > 1011.3 M⊙. These observations show that minor mergers do not fuel LERGs, and are consistent with typical LERGs being powered by accretion of matter from their halo. Where LERGs are associated with major mergers, these objects may evolve into more efficiently accreting active galactic nuclei as the merger progresses and more gas falls on to the central engine.

Properties of the Bare Nucleus of Comet 96P/Machholz 1* * Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, Inovações e Comunicações do Brasil (MCTIC/LNA), the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU). Also based on service observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group of Telescopes in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. Also based on observations collected at the European Southern Observatory under ESO program 0101.C-0709(A).

The Astronomical Journal American Astronomical Society 157:5 (2019) 186

Authors:

NL Eisner, MM Knight, C Snodgrass, MSP Kelley, A Fitzsimmons, R Kokotanekova

Properties of the Bare Nucleus of Comet 96P/Machholz 1

The Astronomical Journal, Volume 157, Number 5

Authors:

Nora L. Eisner, Matthew M. Knight, Colin Snodgrass, Michael S.P. Kelley, Alan Fitzsimmons, Rosita Kokotanekova

Abstract:

We observed comet 96P/Machholz 1 on a total of 9 nights before and after perihelion during its 2017/2018 apparition. Both its unusually small perihelion distance and the observed fragmentation during multiple apparitions make 96P an object of great interest. Our observations show no evidence of a detectable dust coma, implying that we are observing a bare nucleus at distances ranging from 2.3 AU to 3.8 AU. Based on this assumption we calculated its color, and found average values of g'-r' = 0.50 +/- 0.04, r'-i' = 0.17 +/- 0.03, and i'-z' = 0.06 +/- 0.04. These are notably more blue than those of the nuclei of other Jupiter family and long period comets. Furthermore, assuming a bare nucleus, we found an equivalent nuclear radius of 3.4 +/- 0.2 km with an axial ratio of at least 1.6 +/- 0.1. The lightcurve clearly displays one large peak, one broad flat peak, and two distinct troughs, with a clear asymmetry that suggests that the shape of the nucleus deviates from that of a simple triaxial ellipsoid. This asymmetry in the lightcurve allowed us to constrain the nuclear rotation period to 4.10 +/- 0.03 hours and 4.096 +/- 0.002 hours before and after perihelion, respectively. Within the uncertainties, 96P's rotation period does not appear to have changed throughout the apparition, and we conclude a maximum possible change in rotation period of 130 seconds. The observed properties were compared to those of comet 322P and interstellar object 1I/'Oumuamua in an attempt to study the effects of close perihelion passages on cometary surfaces and their internal structure, and the potential interstellar origin of 96P.

Galaxy Zoo: unwinding the winding problem – observations of spiral bulge prominence and arm pitch angles suggest local spiral galaxies are winding

Monthly Notices of the Royal Astronomical Society Oxford University Press 487:2 (2019) 1808-1820

Authors:

KL Masters, Christopher Lintott, RE Hart, SJ Kruk, Rebecca J Smethurst, K Casteels, WC Keel, BD Simmons, Stanescu, J Tate, S Tomi

Abstract:

We use classifications provided by citizen scientists though Galaxy Zoo to investigate the correlation between bulge size and arm winding in spiral galaxies. Whilst the traditional spiral sequence is based on a combination of both measures, and is supposed to favour arm winding where disagreement exists, we demonstrate that, in modern usage, the spiral classifications Sa–Sd are predominantly based on bulge size, with no reference to spiral arms. Furthermore, in a volume limited sample of galaxies with both automated and visual measures of bulge prominence and spiral arm tightness, there is at best a weak correlation between the two. Galaxies with small bulges have a wide range of arm winding, while those with larger bulges favour tighter arms. This observation, interpreted as revealing a variable winding speed as a function of bulge size, may be providing evidence that the majority of spiral arms are not static density waves, but rather wind-up over time. This suggests the ‘winding problem’ could be solved by the constant reforming of spiral arms, rather than needing a static density wave. We further observe that galaxies exhibiting strong bars tend to have more loosely wound arms at a given bulge size than unbarred spirals. This observations suggests that the presence of a bar may slow the winding speed of spirals, and may also drive other processes (such as density waves) that generate spiral arms. It is remarkable that after over 170 years of observations of spiral arms in galaxies our understanding of them remains incomplete.

What do astronomers want from the STFC?

Astronomy and Geophysics Oxford University Press 60:2 (2019) 2.13-2.17

Authors:

Stephen Serjeant, James Bolton, Poshak Gandhi, Christiane Helling, Paolo Mazzali, Ben Stappers, Yvonne Unruh, Aprajita Verma

Abstract:

Stephen Serjeant and the STFC's Astronomy Advisory Panel summarize community responses to its consultation on research priorities, undertaken in November 2018.