Spheroidal post-mergers in the local Universe

ArXiv 1111.5008 (2011)

Authors:

Alfredo Carpineti, Sugata Kaviraj, Daniel Darg, Chris Lintott, Kevin Schawinski, Stanislav Shabala

Abstract:

Galaxy merging is a fundamental aspect of the standard hierarchical galaxy formation paradigm. Recently, the Galaxy Zoo project has compiled a large, homogeneous catalogue of 3373 mergers, through direct visual inspection of the entire SDSS spectro- scopic sample. We explore a subset of galaxies from this catalogue that are spheroidal 'post-mergers' (SPMs) - where a single remnant is in the final stages of relaxation after the merger and shows evidence for a dominant bulge, making them plausible progenitors of early-type galaxies. Our results indicate that the SPMs have bluer colours than the general early-type galaxy population possibly due to merger-induced star formation. An analysis using optical emission line ratios indicates that 20 of our SPMs exhibit LINER or Seyfert-like activity (68%), while the remaining 10 galaxies are classified as either star forming (16%) or quiescent (16%). A comparison to the emission line activity in the ongoing mergers from Darg et al. indicates that the AGN fraction rises in the post-mergers, suggesting that the AGN phase probably becomes dominant only in the very final stages of the merger process. The optical colours of the SPMs and the plausible mass ratios for their progenitors indicate that, while a minority are consistent with major mergers between two early-type galaxies, the vast majority are remnants of major mergers where at least one progenitor is a late-type galaxy.

The distribution of interplanetary dust between 0.96 and 1.04 AU as inferred from impacts on the STEREO spacecraft observed by the Heliospheric Imagers

ArXiv 1111.4389 (2011)

Authors:

CJ Davis, JA Davies, OC St Cyr, M Campbell-Brown, A Skelt, M Kaiser, Nicole Meyer-Vernet, S Crothers, C Lintott, A Smith, S Bamford, EML Baeten

Abstract:

The distribution of dust in the ecliptic plane between 0.96 and 1.04 AU has been inferred from impacts on the two STEREO spacecraft through observation of secondary particle trails and unexpected off-points in the Heliospheric Imager (HI) cameras. This study made use of analysis carried out by members of a distributed web-based project, Solar Stormwatch. A comparison between observations of the brightest particle trails and a survey of fainter trails shows consistent distributions. While there is no obvious correlation between this distribution and the occurrence of individual meteor streams at Earth, there are some broad longitudinal features in these distributions that are also observed in sources of the sporadic meteor population. The asymmetry in the number of trails seen by each spacecraft and the fact that there are many more unexpected off-points in the HI-B than in HI-A, indicates that the majority of impacts are coming from the apex direction. For impacts causing off-points in the HI-B camera these dust particles are estimated to have masses in excess of 10-17 kg with radii exceeding 0.1 {\mu}m. For off-points observed in the HI-A images, which can only have been caused by particles travelling from the anti-apex direction, the distribution is consistent with that of secondary 'storm' trails observed by HI-B, providing evidence that these trails also result from impacts with primary particles from an anti-apex source. It is apparent that the differential mass index of particles from the apex direction is consistently above 2. This indicates that the majority of the mass is within the smaller particles of this population. In contrast, the differential mass index of particles from the anti-apex direction (causing off-points in HI-A) is consistently below 2, indicating that the majority of the mass is to be found in larger particles of this distribution.

Galaxy Zoo: building the low-mass end of the red sequence with local post-starburst galaxies

ArXiv 1111.1785 (2011)

Authors:

O Ivy Wong, K Schawinski, S Kaviraj, KL Masters, RC Nichol, C Lintott, WC Keel, D Darg, SP Bamford, D Andreescu, P Murray, MJ Raddick, A Szalay, D Thomas, J VandenBerg

Abstract:

We present a study of local post-starburst galaxies (PSGs) using the photometric and spectroscopic observations from the Sloan Digital Sky Survey (SDSS) and the results from the Galaxy Zoo project. We find that the majority of our local PSG population have neither early- nor late- type morphologies but occupy a well-defined space within the colour-stellar mass diagram, most notably, the low-mass end of the "green valley" below the transition mass thought to be the mass division between low-mass star-forming galaxies and high-mass passively-evolving bulge-dominated galaxies. Our analysis suggests that it is likely that a local PSG will quickly transform into "red", low-mass early-type galaxies as the stellar morphologies of the "green" PSGs largely resemble that of the early-type galaxies within the same mass range. We propose that the current population of PSGs represents a population of galaxies which is rapidly transitioning between the star-forming and the passively-evolving phases. Subsequently, these PSGs will contribute towards the build-up of the low-mass end of the "red sequence" once the current population of young stars fade and stars are no longer being formed. These results are consistent with the idea of "downsizing" where the build-up of smaller galaxies occurs at later epochs.

Galaxy Zoo: The Environmental Dependence of Bars and Bulges in Disc Galaxies

ArXiv 1111.0969 (2011)

Authors:

Ramin A Skibba, Karen L Masters, Robert C Nichol, Idit Zehavi, Ben Hoyle, Edward M Edmondson, Steven P Bamford, Carolin N Cardamone, William C Keel, Chris Lintott, Kevin Schawinski

Abstract:

We present an analysis of the environmental dependence of bars and bulges in disc galaxies, using a volume-limited catalogue of 15810 galaxies at z<0.06 from the Sloan Digital Sky Survey with visual morphologies from the Galaxy Zoo 2 project. We find that the likelihood of having a bar, or bulge, in disc galaxies increases when the galaxies have redder (optical) colours and larger stellar masses, and observe a transition in the bar and bulge likelihoods, such that massive disc galaxies are more likely to host bars and bulges. We use galaxy clustering methods to demonstrate statistically significant environmental correlations of barred, and bulge-dominated, galaxies, from projected separations of 150 kpc/h to 3 Mpc/h. These environmental correlations appear to be independent of each other: i.e., bulge-dominated disc galaxies exhibit a significant bar-environment correlation, and barred disc galaxies show a bulge-environment correlation. We demonstrate that approximately half (50 +/- 10%) of the bar-environment correlation can be explained by the fact that more massive dark matter haloes host redder disc galaxies, which are then more likely to have bars. Likewise, we show that the environmental dependence of stellar mass can only explain a small fraction (25 +/- 10%) of the bar-environment correlation. Therefore, a significant fraction of our observed environmental dependence of barred galaxies is not due to colour or stellar mass dependences, and hence could be due to another galaxy property. Finally, by analyzing the projected clustering of barred and unbarred disc galaxies with halo occupation models, we argue that barred galaxies are in slightly higher-mass haloes than unbarred ones, and some of them (approximately 25%) are satellite galaxies in groups. We also discuss implications about the effects of minor mergers and interactions on bar formation.

The Galaxy Zoo survey for giant AGN-ionized clouds: past and present black-hole accretion events

ArXiv 1110.6921 (2011)

Authors:

William C Keel, S Drew Chojnowski, Vardha N Bennert, Kevin Schawinski, Chris J Lintott, Stuart Lynn, Anna Pancoast, Chelsea Harris, AM Nierenberg, Alessandro Sonnenfeld, Richard Proctor

Abstract:

Some active galactic nuclei (AGN) are surrounded by extended emission-line regions (EELRs), which trace both the illumination pattern of escaping radiation and its history over the light-travel time from the AGN to the gas. From a new set of such EELRs, we present evidence that the AGN in many Seyfert galaxies undergo luminous episodes 20,000-200,000 years in duration. Motivated by the discovery of the spectacular nebula known as Hanny's Voorwerp, ionized by a powerful AGN which has apparently faded dramatically within ~ 100,000 years, Galaxy Zoo volunteers have carried out both targeted and serendipitous searches for similar emission-line clouds around low-redshift galaxies.We present the resulting list of candidates and describe spectroscopy identifying 19 galaxies with AGN-ionized regions at projected radii > 10 kpc. This search recovered known EELRs and identified additional previously unknown cases, one with detected emission to r = 37 kpc. At least 14/19 are in interacting or merging systems; tidal tails are a prime source of extraplanar ionized gas. We see a mix of one- and two-sided structures, with observed cone angles from 23-112 degrees. We consider the energy balance in the ionized clouds, with lower and upper bounds on ionizing luminosity from recombination and ionization-parameter arguments, and estimate the luminosity of the core from the far-infrared data. The implied ratio of ionizing radiation seen by the clouds to that emitted by the nucleus, for a constant nuclear source, ranges from 0.02 to > 12; 7/19 exceed unity. Small values imply heavily obscured AGN. However, large values may require that the AGN has faded over tens of thousands of years, giving us several examples of systems in which such dramatic long-period variation has occurred; this is the only current technique for addressing these timescales in AGN history. (Abridged)