The detection of a population of submillimeter-bright, strongly lensed galaxies

Science 330:6005 (2010) 800-804

Authors:

M Negrello, R Hopwood, G De Zotti, A Cooray, A Verma, J Bock, DT Frayer, MA Gurwell, A Omont, R Neri, H Dannerbauer, LL Leeuw, E Barton, J Cooke, S Kim, E Da Cunha, G Rodighiero, P Cox, DG Bonfield, MJ Jarvis, S Serjeant, RJ Ivison, S Dye, I Aretxaga, DH Hughes, E Ibar, F Bertoldi, I Valtchanov, S Eales, L Dunne, SP Driver, R Auld, S Buttiglione, A Cava, CA Grady, DL Clements, A Dariush, J Fritz, D Hill, JB Hornbeck, L Kelvin, G Lagache, M Lopez-Caniego, J Gonzalez-Nuevo, S Maddox, E Pascale, M Pohlen, EE Rigby, A Robotham, C Simpson, DJB Smith, P Temi, MA Thompson, BE Woodgate, DG York, JE Aguirre, A Beelen, A Blain, AJ Baker, M Birkinshaw, R Blundell, CM Bradford, D Burgarella, L Danese, JS Dunlop, S Fleuren, J Glenn, AI Harris, J Kamenetzky, RE Lupu, RJ Maddalena, BF Madore, PR Maloney, H Matsuhara, MJ Michaowski, EJ Murphy, BJ Naylor, H Nguyen, C Popescu, S Rawlings, D Rigopoulou, D Scott, KS Scott, M Seibert, I Smail, RJ Tuffs, JD Vieira, PP Van Der Werf, J Zmuidzinas

Abstract:

Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.

The Sudden Death of the Nearest Quasar

ArXiv 1011.0427 (2010)

Authors:

Kevin Schawinski, Daniel A Evans, Shanil Virani, C Megan Urry, William C Keel, Priyamvada Natarajan, Chris J Lintott, Anna Manning, Paolo Coppi, Sugata Kaviraj, Steven P Bamford, Gyula IG Jozsa, Michael Garrett, Hanny van Arkel, Pamela Gay, Lucy Fortson

Abstract:

Galaxy formation is significantly modulated by energy output from supermassive black holes at the centers of galaxies which grow in highly efficient luminous quasar phases. The timescale on which black holes transition into and out of such phases is, however, unknown. We present the first measurement of the shutdown timescale for an individual quasar using X-ray observations of the nearby galaxy IC 2497, which hosted a luminous quasar no more than 70,000 years ago that is still seen as a light echo in `Hanny's Voorwerp', but whose present-day radiative output is lower by at least 2 and more likely by over 4 orders of magnitude. This extremely rapid shutdown provides new insights into the physics of accretion in supermassive black holes, and may signal a transition of the accretion disk to a radiatively inefficient state.

Herschel -ATLAS: Extragalactic number counts from 250 to 500 microns

Astronomy and Astrophysics 518:4 (2010)

Authors:

DL Clements, E Rigby, S Maddox, L Dunne, A Mortier, C Pearson, A Amblard, R Auld, M Baes, D Bonfield, D Burgarella, S Buttiglione, A Cava, A Cooray, A Dariush, G De Zotti, S Dye, S Eales, D Frayer, J Fritz, JP Gardner, J Gonzalez-Nuevo, D Herranz, E Ibar, R Ivison, MJ Jarvis, G Lagache, L Leeuw, M Lopez-Caniego, M Negrello, E Pascale, M Pohlen, G Rodighiero, S Samui, S Serjeant, B Sibthorpe, D Scott, DJB Smith, P Temi, M Thompson, I Valtchanov, P Van Der Werf, A Verma

Abstract:

Aims. The Herschel-ATLAS survey (H-ATLAS) will be the largest area survey to be undertaken by the Herschel Space Observatory. It will cover 550 sq. deg. of extragalactic sky at wavelengths of 100, 160, 250, 350 and 500 μm when completed, reaching flux limits (5σ) from 32 to 145 mJy. We here present galaxy number counts obtained for SPIRE observations of the first ∼14 sq. deg. observed at 250, 350 and 500 μm. Methods. Number counts are a fundamental tool in constraining models of galaxy evolution. We use source catalogs extracted from the H-ATLAS maps as the basis for such an analysis. Correction factors for completeness and flux boosting are derived by applying our extraction method to model catalogs and then applied to the raw observational counts. Results. We find a steep rise in the number counts at flux levels of 100-200 mJy in all three SPIRE bands, consistent with results from BLAST. The counts are compared to a range of galaxy evolution models. None of the current models is an ideal fit to the data but all ascribe the steep rise to a population of luminous, rapidly evolving dusty galaxies at moderate to high redshift. © 2010 ESO.

Herschel -ATLAS: The dust energy balance in the edge-on spiral galaxy UGC 4754

Astronomy and Astrophysics 518:8 (2010)

Authors:

M Baes, J Fritz, DA Gadotti, DJB Smith, L Dunne, E Da Cunha, A Amblard, R Auld, GJ Bendo, D Bonfield, D Burgarella, S Buttiglione, A Cava, D Clements, A Cooray, A Dariush, G De Zotti, S Dye, S Eales, D Frayer, J Gonzalez-Nuevo, D Herranz, E Ibar, R Ivison, G Lagache, L Leeuw, M Lopez-Caniego, M Jarvis, S Maddox, M Negrello, M Michałowski, E Pascale, M Pohlen, E Rigby, G Rodighiero, S Samui, S Serjeant, P Temi, M Thompson, P Van Der Werf, A Verma, C Vlahakis

Abstract:

We use Herschel PACS and SPIRE observations of the edge-on spiral galaxy UGC 4754, taken as part of the H-ATLAS SDP observations, to investigate the dust energy balance in this galaxy. We build detailed SKIRT radiative models based on SDSS and UKIDSS maps and use these models to predict the far-infrared emission. We find that our radiative transfer model underestimates the observed FIR emission by a factor of two to three. Similar discrepancies have been found for other edge-on spiral galaxies based on IRAS, ISO, and SCUBA data. Thanks to the good sampling of the SED at FIR wavelengths, we can rule out an underestimation of the FIR emissivity as the cause for this discrepancy. Instead we support highly obscured star formation that contributes little to the optical extinction as a more probable explanation. © 2010 ESO.

Herschel ATLAS: The cosmic star formation history of quasar host galaxies

Astronomy and Astrophysics 518:8 (2010)

Authors:

S Serjeant, F Bertoldi, AW Blain, DL Clements, A Cooray, L Danese, J Dunlop, L Dunne, S Eales, J Falder, E Hatziminaoglou, DH Hughes, E Ibar, MJ Jarvis, A Lawrence, MG Lee, M Michałowski, M Negrello, A Omont, M Page, C Pearson, P Van Der Werf, G White, A Amblard, R Auld, M Baes, DG Bonfield, D Burgarella, S Buttiglione, A Cava, A Dariush, G De Zotti, S Dye, D Frayer, J Fritz, J Gonzalez-Nuevo, D Herranz, RJ Ivison, G Lagache, L Leeuw, M Lopez-Caniego, S Maddox, E Pascale, M Pohlen, E Rigby, G Rodighiero, S Samui, B Sibthorpe, DJB Smith, P Temi, M Thompson, I Valtchanov, A Verma

Abstract:

We present a derivation of the star formation rate per comoving volume of quasar host galaxies, derived from stacking analyses of far-infrared to mm-wave photometry of quasars with redshifts 0 < z < 6 and absolute I-band magnitudes -22 > IAB > -32 We use the science demonstration observations of the first ∼ 16 deg2 from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) in which there are 240 quasars from the Sloan Digital Sky Survey (SDSS) and a further 171 from the 2dF-SDSS LRG and QSO (2SLAQ) survey. We supplement this data with a compilation of data from IRAS, ISO, Spitzer, SCUBA and MAMBO. H-ATLAS alone statistically detects the quasars in its survey area at > 5σ at 250, 350 and 500 μ m. From the compilation as a whole we find striking evidence of downsizing in quasar host galaxy formation: low-luminosity quasars with absolute magnitudes in the range -22 > IAB > -24 have a comoving star formation rate (derived from 100 μ m rest-frame luminosities) peaking between redshifts of 1 and 2, while high-luminosity quasars with IAB < -26 have a maximum contribution to the star formation density at z ∼ 3. The volume-averaged star formation rate of -22 > IAB > -24 quasars evolves as (1 + z)2.3±0.7 at z < 2, but the evolution at higher luminosities is much faster reaching (1 + z) 10±1 at -26 > IAB > -28. We tentatively interpret this as a combination of a declining major merger rate with time and gas consumption reducing fuel for both black hole accretion and star formation. © 2010 ESO.