Galaxy Zoo: Dust in spiral galaxies

Monthly Notices of the Royal Astronomical Society 404:2 (2010) 792-810

Authors:

KL Masters, R Nichol, S Bamford, M Mosleh, CJ Lintott, D Andreescu, EM Edmondson, WC Keel, P Murray, MJ Raddick, K Schawinski, A Slosar, AS Szalay, D Thomas, J Vandenberg

Abstract:

We investigate the effect of dust on spiral galaxies by measuring the inclination dependence of optical colours for 24 276 well-resolved Sloan Digital Sky Survey (SDSS) galaxies visually classified via the Galaxy Zoo project. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4 mag for the ugri passbands (estimating 0.3 mag of extinction in z band). We split the sample into 'bulgy' (early-type) and 'discy' (late-type) spirals using the SDSS fracdeV (or fDeV) parameter and show that the average face-on colour of 'bulgy' spirals is redder than the average edge-on colour of 'discy' spirals. This shows that the observed optical colour of a spiral galaxy is determined almost equally by the spiral type (via the bulge-disc ratio and stellar populations), and reddening due to dust. We find that both luminosity and spiral type affect the total amount of extinction, with discy spirals at Mr∼-21.5 mag having the most reddening - more than twice as much as both the lowest luminosity and most massive, bulge-dominated spirals. An increase in dust content is well known for more luminous galaxies, but the decrease of the trend for the most luminous has not been observed before and may be related to their lower levels of recent star formation. We compare our results with the latest dust attenuation models of Tuffs et al. We find that the model reproduces the observed trends reasonably well but overpredicts the amount of u-band attenuation in edge-on galaxies. This could be an inadequacy in the Milky Way extinction law (when applied to external galaxies), but more likely indicates the need for a wider range of dust-star geometries. We end by discussing the effects of dust on large galaxy surveys and emphasize that these effects will become important as we push to higher precision measurements of galaxy properties and their clustering. © 2010 The Authors. Journal compilation © 2010 RAS.

Galaxy Zoo: Passive red spirals

Monthly Notices of the Royal Astronomical Society 405:2 (2010) 783-799

Authors:

KL Masters, M Mosleh, AK Romer, RC Nichol, SP Bamford, K Schawinski, CJ Lintott, D Andreescu, HC Campbell, B Crowcroft, I Doyle, EM Edmondson, P Murray, MJ Raddick, A Slosar, AS Szalay, J Vandenberg

Abstract:

We study the spectroscopic properties and environments of red (or passive) spiral galaxies found by the Galaxy Zoo project. By carefully selecting face-on disc-dominated spirals, we construct a sample of truly passive discs (i.e. they are not dust reddened spirals, nor are they dominated by old stellar populations in a bulge). As such, our red spirals represent an interesting set of possible transition objects between normal blue spiral galaxies and red early types, making up ∼6 per cent of late-type spirals. We use optical images and spectra from Sloan Digital Sky Survey to investigate the physical processes which could have turned these objects red without disturbing their morphology. We find red spirals preferentially in intermediate density regimes. However, there are no obvious correlations between red spiral properties and environment suggesting that environment alone is not sufficient to determine whether a galaxy will become a red spiral. Red spirals are a very small fraction of all spirals at low masses (M{black star} < 1010 M⊙), but are a significant fraction of the spiral population at large stellar masses showing that massive galaxies are red independent of morphology. We confirm that as expected, red spirals have older stellar populations and less recent star formation than the main spiral population. While the presence of spiral arms suggests that a major star formation could not have ceased a long ago (not more than a few Gyr), we show that these are also not recent post-starburst objects (having had no significant star formation in the last Gyr), so star formation must have ceased gradually. Intriguingly, red spirals are roughly four times as likely than the normal spiral population to host optically identified Seyfert/low-ionization nuclear emission region (LINER; at a given stellar mass and even accounting for low-luminosity lines hidden by star formation), with most of the difference coming from the objects with LINER-like emission. We also find a curiously large optical bar fraction in the red spirals (70 ± 5 verses 27 ± 5 per cent in blue spirals) suggesting that the cessation of star formation and bar instabilities in spirals are strongly correlated. We conclude by discussing the possible origins of these red spirals. We suggest that they may represent the very oldest spiral galaxies which have already used up their reserves of gas - probably aided by strangulation or starvation, and perhaps also by the effect of bar instabilities moving material around in the disc. We provide an online table listing our full sample of red spirals along with the normal/blue spirals used for comparison. © 2010 The Authors. Journal compilation © 2010 RAS.

Galaxy Zoo: Reproducing galaxy morphologies via machine learning

Monthly Notices of the Royal Astronomical Society 406:1 (2010) 342-353

Authors:

M Banerji, O Lahav, CJ Lintott, FB Abdalla, K Schawinski, SP Bamford, D Andreescu, P Murray, MJ Raddick, A Slosar, A Szalay, D Thomas, J Vandenberg

Abstract:

We present morphological classifications obtained using machine learning for objects in the Sloan Digital Sky Survey DR6 that have been classified by Galaxy Zoo into three classes, namely early types, spirals and point sources/artefacts. An artificial neural network is trained on a subset of objects classified by the human eye, and we test whether the machine-learning algorithm can reproduce the human classifications for the rest of the sample. We find that the success of the neural network in matching the human classifications depends crucially on the set of input parameters chosen for the machine-learning algorithm. The colours and parameters associated with profile fitting are reasonable in separating the objects into three classes. However, these results are considerably improved when adding adaptive shape parameters as well as concentration and texture. The adaptive moments, concentration and texture parameters alone cannot distinguish between early type galaxies and the point sources/artefacts. Using a set of 12 parameters, the neural network is able to reproduce the human classifications to better than 90 per cent for all three morphological classes. We find that using a training set that is incomplete in magnitude does not degrade our results given our particular choice of the input parameters to the network. We conclude that it is promising to use machine-learning algorithms to perform morphological classification for the next generation of wide-field imaging surveys and that the Galaxy Zoo catalogue provides an invaluable training set for such purposes. © 2010 The Authors. Journal compilation © 2010 RAS.

Galaxy Zoo: The fraction of merging galaxies in the SDSS and their morphologies

Monthly Notices of the Royal Astronomical Society 401:2 (2010) 1043-1056

Authors:

DW Darg, S Kaviraj, CJ Lintott, K Schawinski, M Sarzi, S Bamford, J Silk, R Proctor, D Andreescu, P Murray, RC Nichol, MJ Raddick, A Slosar, AS Szalay, D Thomas, J Vandenberg

Abstract:

We present the largest, most homogeneous catalogue of merging galaxies in the nearby Universe obtained through the Galaxy Zoo project - an interface on the World Wide Web enabling large-scale morphological classification of galaxies through visual inspection of images from the Sloan Digital Sky Survey (SDSS). The method converts a set of visually inspected classifications for each galaxy into a single parameter (the 'weighted-merger-vote fraction,' fm) which describes our confidence that the system is part of an ongoing merger. We describe how fm is used to create a catalogue of 3003 visually selected pairs of merging galaxies from the SDSS in the redshift range 0.005 < z < 0.1. We use our merger sample and values of fm applied to the SDSS Main Galaxy Spectral sample to estimate that the fraction of volume-limited (Mr < -20.55) major mergers (1/3 < M*1/M*2 < 3) in the nearby Universe is 1-3 × C per cent, where C ∼ 1.5 is a correction factor for spectroscopic incompleteness. Having visually classified the morphologies of the constituent galaxies in our mergers, we find that the spiral-to-elliptical ratio of galaxies in mergers is higher by a factor of ∼2 relative to the global population. In a companion paper, we examine the internal properties of these merging galaxies and conclude that this high spiral-to-elliptical ratio in mergers is due to a longer time-scale over which mergers with spirals are detectable compared to mergers with ellipticals. © 2009 RAS.

Galaxy Zoo: The properties of merging galaxies in the nearby Universe - Local environments, colours, masses, star formation rates and AGN activity

Monthly Notices of the Royal Astronomical Society 401:3 (2010) 1552-1563

Authors:

DW Darg, S Kaviraj, CJ Lintott, K Schawinski, M Sarzi, S Bamford, J Silk, D Andreescu, P Murray, RC Nichol, MJ Raddick, A Slosar, AS Szalay, D Thomas, J Vandenberg

Abstract:

Following the study of Darg et al., we explore the environments, optical colours, stellar masses, star formation and active galactic nucleus activity in a sample of 3003 pairs of merging galaxies drawn from the Sloan Digital Sky Survey using visual classifications from the Galaxy Zoo project. While Darg et al. found that the spiral-to-elliptical ratio in (major) mergers appeared higher than that of the global galaxy population, no significant differences are found between the environmental distributions of mergers and a randomly selected control sample. This makes the high occurrence of spirals in mergers unlikely to be an environmental effect and must therefore arise from differing time-scales of detectability for spirals and ellipticals. We find that merging galaxies have a wider spread in colour than the global galaxy population, with a significant blue tail resulting from intense star formation in spiral mergers. Galaxies classed as star-forming using their emission-line properties have average star formation rates approximately doubled by the merger process though star formation is negligibly enhanced in merging elliptical galaxies. We conclude that the internal properties of galaxies significantly affect the time-scales over which merging systems can be detected (as suggested by recent theoretical studies) which leads to spirals being 'over-observed' in mergers. We also suggest that the transition mass 3 × 1010 M⊙, noted by Kauffmann et al., below which ellipticals are rare could be linked to disc survival/destruction in mergers. © 2009 RAS.