The sins survey: Sinfoni integral field spectroscopy of z 2 star-forming galaxies
Astrophysical Journal 706:2 (2009) 1364-1428
Abstract:
We present the Spectroscopic Imaging survey in the near-infrared (near-IR) with SINFONI (SINS) of high-redshift galaxies. With 80 objects observed and 63 detected in at least one rest-frame optical nebular emission line, mainly Hα, SINS represents the largest survey of spatially resolved gas kinematics, morphologies, and physical properties of star-forming galaxies at z 1-3. We describe the selection of the targets, the observations, and the data reduction. We then focus on the "SINS Hα sample," consisting of 62 rest-UV/optically selected sources at 1.3 < z < 2.6 for which we targeted primarily the Hα and [N II] emission lines. Only ≈ 30% of this sample had previous near-IR spectroscopic observations. The galaxies were drawn from various imaging surveys with different photometric criteria; as a whole, the SINS Hα sample covers a reasonable representation of massive M* ≳ 1010 M ·star-forming galaxies at z 1.5-2.5, with some bias toward bluer systems compared to pure K-selected samples due to the requirement of secure optical redshift. The sample spans 2 orders of magnitude in stellar mass and in absolute and specific star formation rates, with median values ≈ 3 × 1010 M ·, ≈ 70 M· yr-1, and 3 Gyr-1. The ionized gas distribution and kinematics are spatially resolved on scales ranging from 1.5 kpc for adaptive optics assisted observations to typically 4-5 kpc for seeing-limited data. The Hα morphologies tend to be irregular and/or clumpy. About one-third of the SINS Hα sample galaxies are rotation-dominated yet turbulent disks, another one-third comprises compact and velocity dispersion-dominated objects, and the remaining galaxies are clear interacting/merging systems; the fraction of rotation-dominated systems increases among the more massive part of the sample. The Hα luminosities and equivalent widths suggest on average roughly twice higher dust attenuation toward the H II regions relative to the bulk of the stars, and comparable current and past-averaged star formation rates. © 2009. The American Astronomical Society.Galaxy Zoo: Exploring the Motivations of Citizen Science Volunteers
ArXiv 0909.2925 (2009)
Abstract:
The Galaxy Zoo citizen science website invites anyone with an Internet connection to participate in research by classifying galaxies from the Sloan Digital Sky Survey. As of April 2009, more than 200,000 volunteers had made more than 100 million galaxy classifications. In this paper, we present results of a pilot study into the motivations and demographics of Galaxy Zoo volunteers, and define a technique to determine motivations from free responses that can be used in larger multiple-choice surveys with similar populations. Our categories form the basis for a future survey, with the goal of determining the prevalence of each motivation.Galaxy Zoo Green Peas: Discovery of A Class of Compact Extremely Star-Forming Galaxies
ArXiv 0907.4155 (2009)
Abstract:
We investigate a class of rapidly growing emission line galaxies, known as "Green Peas", first noted by volunteers in the Galaxy Zoo project because of their peculiar bright green colour and small size, unresolved in SDSS imaging. Their appearance is due to very strong optical emission lines, namely [O III] 5007 A, with an unusually large equivalent width of up to ~1000 A. We discuss a well-defined sample of 251 colour-selected objects, most of which are strongly star forming, although there are some AGN interlopers including 8 newly discovered narrow Line Seyfert 1 galaxies. The star-forming Peas are low mass galaxies (M~10^8.5 - 10^10 M_sun) with high star formation rates (~10 M_sun/yr), low metallicities (log[O/H] + 12 ~ 8.7) and low reddening (E(B-V) < 0.25) and they reside in low density environments. They have some of the highest specific star formation rates (up to ~10^{-8} yr^{-1}) seen in the local Universe, yielding doubling times for their stellar mass of hundreds of Myrs. The few star-forming Peas with HST imaging appear to have several clumps of bright star-forming regions and low surface density features that may indicate recent or ongoing mergers. The Peas are similar in size, mass, luminosity and metallicity to Luminous Blue Compact Galaxies. They are also similar to high redshift UV-luminous galaxies, e.g., Lyman-break galaxies and Lyman-alpha emitters, and therefore provide a local laboratory with which to study the extreme star formation processes that occur in high-redshift galaxies. Studying starbursting galaxies as a function of redshift is essential to understanding the build up of stellar mass in the Universe.Galaxy Zoo: A correlation between coherence of galaxy spin chirality and star formation efficiency
ArXiv 0906.0994 (2009)
Abstract:
We report on the finding of a correlation between galaxies' past star formation activity and the degree to which neighbouring galaxies rotation axes are aligned. This is obtained by cross-correlating star formation histories, derived with MOPED, and spin direction (chirality), as determined by the Galaxy Zoo project, for a sample of SDSS galaxies. Our findings suggest that spiral galaxies which formed the majority of their stars early (z > 2) tend to display coherent rotation over scales of ~10 Mpc/h. The correlation is weaker for galaxies with significant recent star formation. We find evidence for this alignment at more than the 5-sigma level, but no correlation with other galaxy stellar properties. This finding can be explained within the context of hierarchical tidal-torque theory if the SDSS galaxies harboring the majority of the old stellar population where formed in the past, in the same filament and at about the same time. Galaxies with significant recent star formation instead are in the field, thus influenced by the general tidal field that will align them in random directions or had a recent merger which would promote star formation, but deviate the spin direction.Revealing Hanny's Voorwerp: radio observations of IC 2497
ArXiv 0905.1851 (2009)